ÉVALUATION COMMUNE 2020 CORRECTION Yohan Atlan © www.vecteurbac.fr

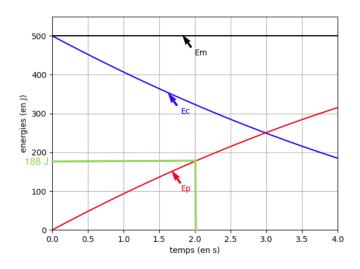
CLASSE: Première **E3C**: \square E3C1 \boxtimes E3C2 \square E3C3

VOIE : ⊠ Générale **ENSEIGNEMENT** : **physique-chimie**

DURÉE DE L'ÉPREUVE : 1h CALCULATRICE AUTORISÉE : ⊠Oui □ Non

Bouquet final

I.


1.

L'énergie mécanique $E_M=E_C+E_p$. L'énergie mécanique est la somme des énergies cinétique et potentielle L'énergie mécanique (courbe noire) ne varie pas lors du mouvement elle se conserve : $E_m=C_0$ Ainsi les forces de frottements sont négligeables.

2. Par lecture graphique, pour t=2s, Epp=185J

$$Epp = m \times g \times Y_A$$

$$Y_A = \frac{Epp}{m \times g} = \frac{185}{100.10^{-3} \times 9.81} = 188 \text{ m}$$

3. D'après la question 2, Après cet instant (t=2,0s), les évolutions de la figure 2 ne sont plus : respectées. L'énergie mécanique ne se conserve plus. Ainsi il faut prendre en compte les pertes énergétiques dues aux forces de frottements.

II.

4.

$$CO_2 + 4H^+ + 4e^- = C + 2H_2O$$

Le carbone est un réducteur car il est capable de céder des électrons.

5.

$$n_C = \frac{m_C}{M_C} = \frac{3,20}{12.0} = 2,67.10^{-1} \text{mol}$$

6.

$$2 \text{ KNO}_3 + 3 \text{ C} + \text{ S} \rightarrow \text{ K}_2\text{S} + 3 \text{ CO}_2 + \text{ N}_2$$

Il faut que les réactifs soient dans les proportions steochiometrique :

$$\frac{n_{\text{KNO}_3}}{2} = \frac{n_{\text{C}}}{3}$$

$$n_{KNO_3} = \frac{2 \times n_C}{3}$$

or
$$n_{KNO_3} = \frac{m_{KNO_3}}{M_{KNO_3}}$$

$$\begin{split} m_{KNO_3} &= n_{KNO_3} \times M_{KNO_3} \\ m_{KNO_3} &= \frac{2 \times n_C}{3} \times M_{KNO_3} \\ m_{KNO_3} &= \frac{2 \times 2,67.\,10^{-1}}{3} \times (39,1 + 14,0 + 3 \times 16,0) = 18,0g \end{split}$$

7.

$$\begin{aligned} P_{KNO_3} &= \frac{m_{KNO_3}}{m_{totale}} \times 100 \\ P_{KNO_3} &= \frac{18,0}{25} \times 100 = 72\% \end{aligned}$$

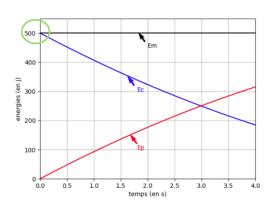
D'après le texte : « poudre noire contenant jusqu'à 75 % en masse de salpêtre de formule KNO₃ ».

Le résultat est proche de la valeur attendue.

Calculons l'écart relatif :

Ecart relatif =
$$\left| \frac{P_{KNO_3} - P_{ref}}{P_{ref}} \right| = \left| \frac{72 - 75}{75} \right| = 0.04 = 4\%$$

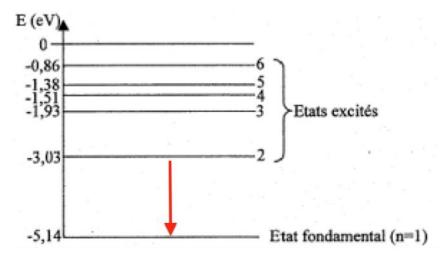
L'écart est inferieur à 5% le résultat est compatible avec la description de la poudre noire.


8.

L'énergie libérée lors d'une réaction est proportionnelle à la quantité de matière de combustible consommé :

le résultat négatif nous indique que l'énergie est libérée.

9. Sur la figure 2 on relève Ec_{initiale}=500J=0,5kJ


L'énergie libérée est dissipée sous forme thermique (chaleur de la combustion) et seulement une petite partie se converti sous forme d'énergie cinétique

III.

10.

Quand un atome transite vers un niveau d'énergie inferieur, un photon est émis.

11.

$$\Delta E = |E_f - E_i| = h \times \nu = \ h \times \frac{c}{\lambda}$$

$$\Delta E = |E_f - E_i| = 6,63. \, 10^{-34} \times \frac{3,00. \, 10^8}{589. \, 10^{-9}} = 3,37. \, 10^{-19} J$$

$$\Delta E = |E_f - E_i| = 2,11 \text{ ev}$$

Il faut donc trouver un écart entre deux niveau de 2,11ev.

cela correspond au passage du niveau 2 au niveau 1 :

$$|E_f - E_i| = |-5.14 - (-3.03)| = 2.11 \text{ ev}$$