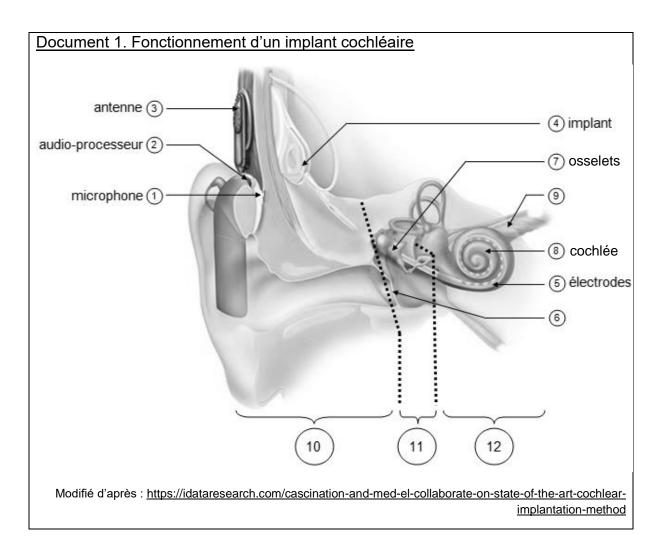

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tior	1 :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	ıméros	figure	nt sur	la con	ocatio	n.)											1.1

ÉVALUATION
CLASSE: Première
VOIE : ⊠ Générale □ Technologique □ Toutes voies (LV)
ENSEIGNEMENT : Enseignement scientifique
DURÉE DE L'ÉPREUVE : 2h
Niveaux visés (LV) : LVA LVB
Axes de programme :
CALCULATRICE AUTORISÉE : ⊠Oui □ Non
DICTIONNAIRE AUTORISÉ : □Oui □ Non
☑ Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est nécessaire que chaque élève dispose d'une impression en couleur.
☐ Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour de l'épreuve.
Nombre total de pages : 13

Le candidat <u>traite seulement deux exercices, de son choix,</u> parmi les trois qui sont proposés dans ce sujet.

Il indique son choix en début de copie.


Exercice 1 – Niveau première

Thème « Son et musique, porteurs d'information »

Implant cochléaire

Sur 10 points

L'implant cochléaire est un dispositif auditif destiné aux personnes atteintes d'une surdité sévère ou profonde. Il transforme les sons en signaux électriques envoyés directement au nerf auditif grâce à des électrodes posées chirurgicalement.

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° d	d'ins	scrip	otio	n :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les no	uméros	figure	ent sur	la con	vocatio	on.)]									1.1

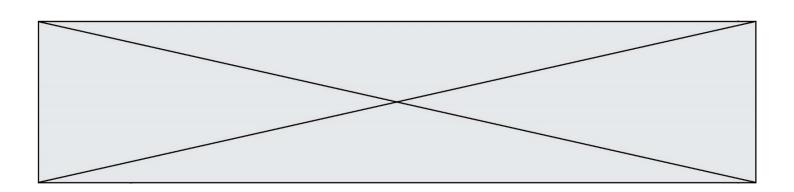
Le microphone ① capte les sons en provenance de l'extérieur.

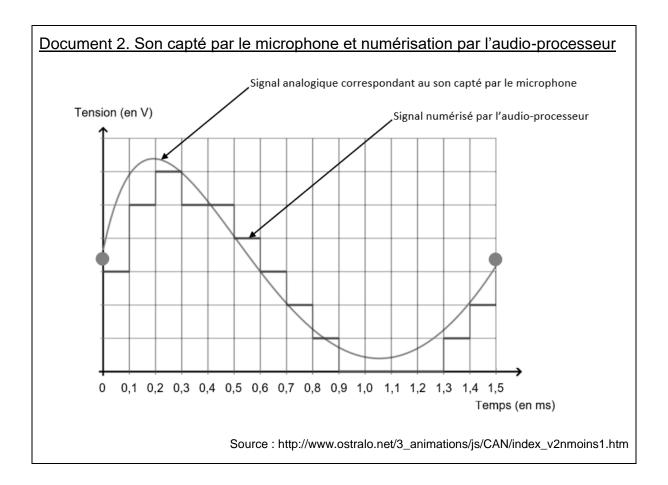
L'audio-processeur ② numérise les sons.

L'antenne ③ transmet les signaux numériques à l'implant situé sous la peau.

L'implant ④ envoie des signaux électriques dans les électrodes ⑤ situées dans la cochlée (comprenant les cellules sensorielles ciliées) ⑧.

Les fibres du nerf auditif captent les signaux électriques et les transmettent au cerveau.


- 1- Indiquer les légendes des structures numérotées 6, 9, 10, 11 et 12.
- 2- Certaines personnes subissent une surdité consécutive à un dommage des cellules ciliées de l'oreille interne. Elles peuvent alors être appareillées avec un implant cochléaire.


Expliquer le rôle des cellules ciliées de l'oreille interne dans le cas d'une audition normale et comment l'implant cochléaire permet de corriger la surdité.

3- Le microphone d'un implant cochléaire capte un son périodique en provenance de l'extérieur. Un motif élémentaire de période T de ce son est représenté sur le document 2 de la page suivante.

Déterminer la valeur de la fréquence *f* du son capté par le microphone.

4- Déterminer graphiquement la valeur de la période d'échantillonnage T_e utilisée pour cette numérisation puis justifier que la valeur de la fréquence d'échantillonnage f_e est égale à 10 000 Hz.

5-a- Sachant qu'une quantification sur n bits permet 2^n paliers numériques, indiquer, en le justifiant, pourquoi ici n=3.

5-b- La taille *L* en octet d'un fichier audio est donnée par la formule :

$$L = f_e \times \frac{n}{8} \times \Delta t$$

avec f_e la fréquence d'échantillonnage (en hertz), n la quantification (en bits) et Δt la durée (en secondes).

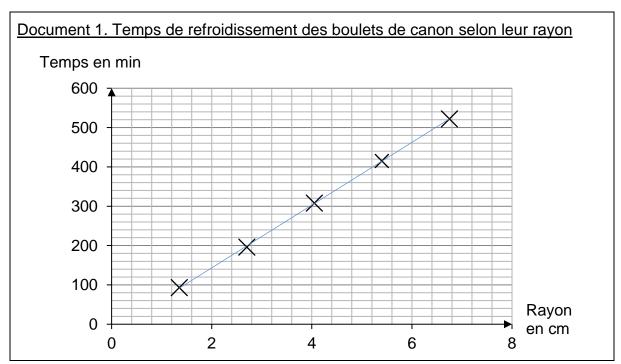
Pendant une journée, l'audio-processeur numérise en moyenne 10 heures de sons différents. Calculer la taille L d'un fichier audio équivalent à une journée de fonctionnement de l'implant cochléaire.

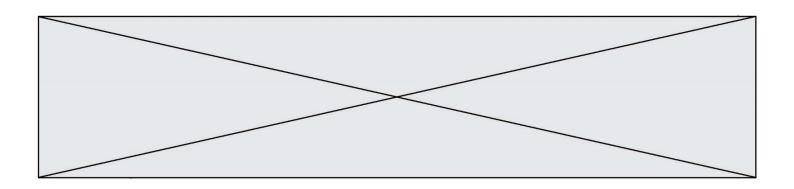
Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° (d'ins	crip	tio	ı :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANCAISE Né(e) le :	(Les nu	uméro	s figure	ent sur	la con	vocatio	on.)											1.1

Exercice 2 – Niveau première

Thème « La Terre, un astre singulier »

Approche historique de l'âge de la Terre


Sur 10 points


Depuis l'Antiquité, la question de l'âge de la Terre a soulevé de nombreuses controverses. On se propose d'étudier différentes méthodes ayant permis d'estimer l'âge de la Terre au cours de l'histoire des sciences.

Partie A. Les précurseurs : Buffon et Kelvin

• La démarche de Buffon

Georges Louis Leclerc, comte de Buffon, est le premier à réaliser une expérience pour déterminer l'âge de la Terre. Partant de l'hypothèse que la Terre a d'abord été une sphère de matière en fusion qui a refroidi, il chauffe au rouge 10 boulets de fer forgé de tailles différentes et inférieures à 5 pouces (1 pouce = 2,54 cm). Buffon mesure la durée de leur refroidissement et extrapole ensuite ses résultats au globe terrestre, dont le diamètre connu à l'époque est proche de 13 000 km. Pendant plusieurs années et avec des métaux différents, il effectuera plus de 60 expériences, chacune répétée trois fois.

Buffon écrit:

« Maintenant, si l'on voulait chercher [...] combien il faudrait de temps à un globe gros comme la Terre pour se refroidir, on trouverait, d'après les expériences précédentes, [...] quatre-vingt-seize-mille six cent soixante-dix ans et cent trente-deux jours pour la refroidir à la température actuelle » (extrait de *L'Histoire Naturelle, générale et particulière*, Buffon, 1774).

• La démarche de Kelvin

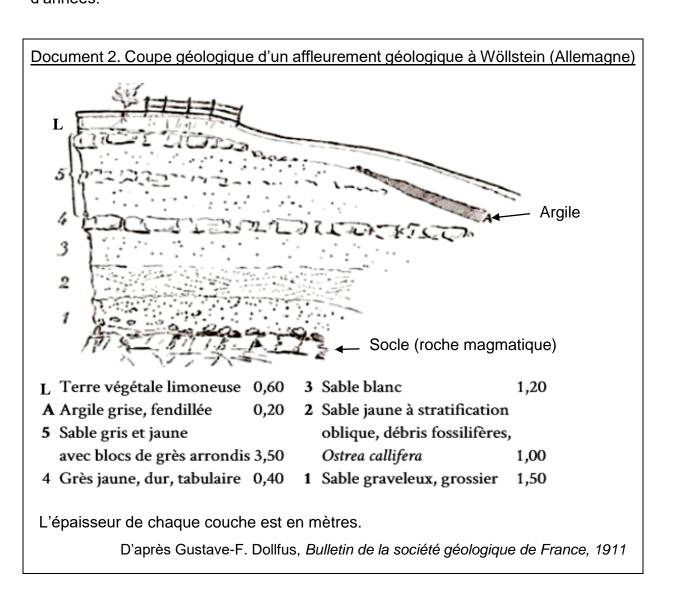
Presque un siècle plus tard, le Britannique Lord Kelvin utilise la théorie de la conduction de la chaleur établie par Fourier et modélisée par « l'équation de la chaleur ». En considérant que l'intérieur de la Terre est homogène et rigide, il estime l'âge de la Terre entre 20 et 400 millions d'années en utilisant l'équation de transfert de chaleur.

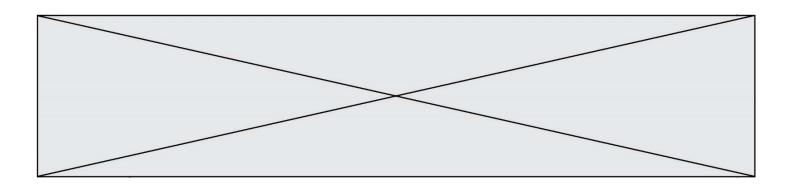
Lord Kelvin écrit :

« Le fait que la température de la Terre augmente avec la profondeur sous la surface implique une perte continue de chaleur de l'intérieur par conduction vers l'extérieur, à travers ou dans la croûte supérieure. Puisque la croûte supérieure ne devient pas plus chaude d'année en année, il doit donc y avoir une perte de chaleur séculaire de la Terre entière... Mais il est certain que la Terre devient de plus en plus froide d'âge en âge... » (d'après *On the Secular Cooling of the Earth*, Lord Kelvin, 1862).

En s'appuyant sur le document 1, les informations précédentes et sur les connaissances personnelles, répondre aux questions suivantes.

- **1-** Expliciter la démarche mise en œuvre par Buffon, ses points forts et ses limites.
- 2- Expliciter la démarche mise en œuvre par Lord Kelvin, ses points forts et ses limites.
- **3-** Commenter les âges de la Terre proposés par Buffon et Kelvin. On attend une comparaison des valeurs, de leur précision et de leur ordre de grandeur.


Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tior	ı :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	uméro:	s figure	ent sur	la con	vocatio	on.)											1.1


Partie B. Les positions des géologues et de Charles Darwin

Au XIX^e siècle, des géologues à l'instar de Charles Lyell, affirment que l'explication du passé de la Terre réside dans l'étude des phénomènes géologiques actuels. Ils utilisent la vitesse de sédimentation pour évaluer l'âge de la Terre.

En considérant que les sédiments se déposent à un rythme compris entre 1 mm et 1 cm par an, ils estiment l'âge de la Terre a environ 3 milliards d'années.

Quant à Charles Darwin, il s'oppose à Kelvin dans son ouvrage « De l'origine des espèces » paru en 1859. Selon lui, la théorie de l'évolution permet d'expliquer la diversité du vivant, mais elle nécessite des temps très longs, de l'ordre du milliard d'années.

- **4-** En considérant que la vitesse de sédimentation est de 0,1 mm par an et que les sédiments formant ces différentes strates (couches 1 à 5) se sont déposés de manière uniforme, estimer la durée de formation de l'ensemble des strates de Wöllstein surmontant le socle.
- **5-** Comparer cet âge à celui estimé par Darwin. Proposer une hypothèse pour laquelle cette estimation de l'âge de la Terre à partir de cette coupe géologique est très différente.

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tior	n:			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)											1.1

Exercice 3 – Niveau première

Thème « Une longue histoire de la matière »

Un poison radioactif

Sur 10 points

Page 9 / 13

Un écrivain vous contacte pour achever un roman d'espionnage... Suspense!

<u>Document 1 :</u> lettre de l'écrivain à votre attention

Bonjour, je suis Jules Servadac, écrivain de roman policier. Je vous sollicite afin de valider quelques aspects scientifiques de mon roman.

Voici mes premières lignes :

« Pierre et Marie Curie ont découvert le polonium, juste avant le radium qui les rendit célèbres. Le polonium-210 (²¹⁰Po) est mille fois plus toxique que le plutonium, et un million de fois plus encore que le cyanure. Sachez que dix microgrammes (μg) sont nécessaires pour empoisonner un homme de poids moyen en quelques semaines et que cette dose mortelle est invisible à l'œil nu ».

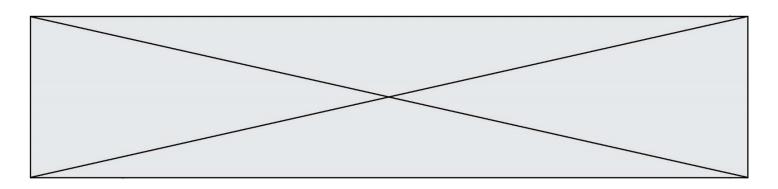
Dans mon roman, Tiago, agent secret de Folivie, souhaite s'en servir pour éliminer un agent infiltré. Celui-ci dîne tous les soirs dans le même restaurant : l'agent secret compte en profiter pour « poivrer » à sa façon son dîner.

Pour cela, Tiago doit se procurer du polonium-210. Pour des raisons logistiques, il ne peut récupérer le polonium que 100 jours avant le dîner programmé dans un autre pays. Or le polonium perd la moitié de sa radioactivité tous les 138 jours.

J'ai deux problèmes à vous soumettre concernant la quantité de polonium que Tiago doit transporter :

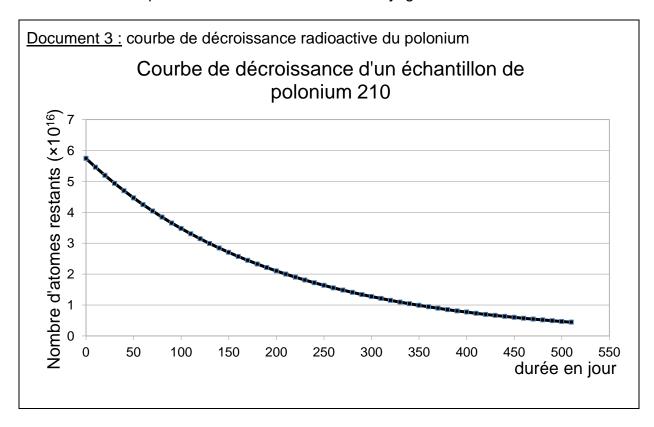
- Restera-t-il suffisamment de Polonium-210 radioactif à la fin de son voyage ?
- La dose sera-t-elle invisible à l'œil nu ?

<u>Document 2 :</u> données relatives au polonium


Le polonium est l'un des rares éléments à cristalliser dans le réseau cubique simple.

Paramètre de maille : $a = 3,359 \times 10^{-10} \text{ m}$.

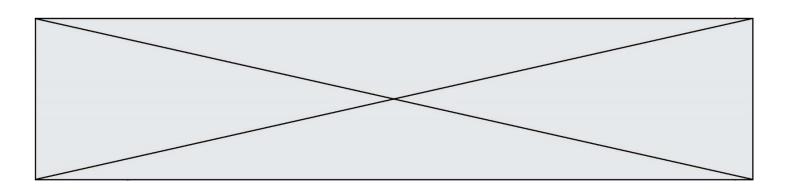
Masse molaire du polonium : $M(Po) = 209,98 \text{ g} \cdot \text{mol}^{-1}$.


Donnée complémentaire : nombre d'Avogadro $N_A = 6,022 \times 10^{23} \text{ mol}^{-1}$.

Il est rappelé que la masse molaire d'un élément est la masse d'une mole de quantité de matière de cet élément.

Partie 1 : la radioactivité du polonium

L'objectif est ici de vérifier qu'en partant avec 20 µg de polonium-210, il restera suffisamment de polonium radioactif à l'issue du voyage.

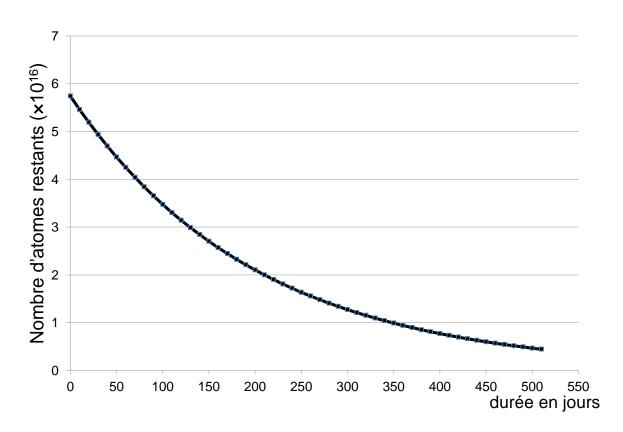

- **1-** Déterminer en μg la masse initiale de Polonium présente dans l'échantillon utilisé pour réaliser le graphique du document 3.
- **2-** Jules Servadac écrit dans son roman : « Le polonium perd la moitié de sa radioactivité tous les 138 jours ».
- **2-a-** Définir scientifiquement la grandeur physique sur laquelle il appuie cette affirmation, en donnant son nom.
- **2-b-** La faire figurer sur le graphique du document réponse à rendre avec la copie en laissant apparents les traits de construction.
- **3-** Justifier par la méthode de votre choix que, pour l'échantillon considéré, la quantité de polonium restant après le voyage sera suffisante pour accomplir la mission.

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° (d'ins	crip	tio	1 :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE NÉ(e) le :	(Les nu	uméro:	figure	ent sur	la con	vocatio	on.)											1.1

Partie 2 : la structure du polonium

L'objectif est ici de vérifier que les 10 µg de polonium dont Tiago a besoin pour empoisonner l'agent infiltré sont bien invisibles à l'œil nu.

- **4-** À partir de vos connaissances et des informations apportées par le document 3, répondre aux questions suivantes :
- **4-a-** Représenter la structure cubique simple du polonium en perspective cavalière.
- 4-b- Dénombrer, en indiquant les calculs effectués, les atomes par maille.
- 5- Montrer que la masse volumique du polonium est de 9,20 x 10⁶ g.m⁻³.
- 6- Comparaison avec la taille d'un grain de poivre.
- 6-a- Calculer le volume occupé par la masse de polonium utilisée par Tiago (10 μg).
- **6-b-** Sachant qu'un grain de poivre broyé occupe un volume d'environ 10⁻¹⁰ m³ et est difficilement visible à l'œil nu, justifier que l'échantillon est invisible.



Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° d	d'ins	scrip	otio	n :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les no	uméros	figure	ent sur	la con	vocatio	on.)]									1.1

Document réponse à rendre avec la copie

Exercice 3 Un poison radioactif

Courbe de décroissance d'un échantillon de polonium 210

