
Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tio	n :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE NÉ(e) le :	(Les nu	uméros	figure	nt sur	la con	ocatio	on.)											1.1

ÉVALUATION
CLASSE: Première
VOIE : ⊠ Générale □ Technologique □ Toutes voies (LV)
ENSEIGNEMENT : Enseignement scientifique
DURÉE DE L'ÉPREUVE : 2h
Niveaux visés (LV) : LVA LVB
Axes de programme :
CALCULATRICE AUTORISÉE : ⊠Oui □ Non
DICTIONNAIRE AUTORISÉ: □Oui □ Non
⊠ Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est nécessaire que chaque élève dispose d'une impression en couleur.
\Box Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour de l'épreuve.
Nombre total de pages : 11

Le candidat <u>traite seulement deux exercices, de son choix,</u> parmi les trois qui sont proposés dans ce sujet.

Il indique son choix en début de copie.

Exercice 1 - Niveau première

Thème « La Terre, un astre singulier »

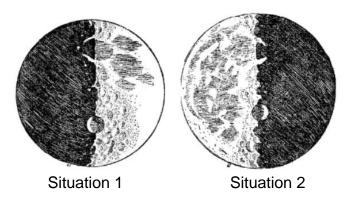
La lumière cendrée de la Lune

Sur 10 points

Périodiquement la Lune nous présente un aspect des plus surprenants. En plus d'une partie fortement lumineuse correspondante à la phase lunaire, il est possible d'apercevoir l'autre partie de la Lune. La lumière qui nous parvient de cette partie plus sombre est appelée « lumière cendrée de la Lune » (voir la photographie).

Document 1. Observations de Galilée

« Je veux noter aussi un fait que j'ai observé, non sans un certain émerveillement : presque au centre de la Lune se trouve une cavité plus grande que toute autre et parfaitement circulaire [...] : dans son obscurcissement et dans son illumination, elle présenterait le même aspect que celui de la Terre dans une région comparable à la Bohème, si cette région était de tous côtés entourés de hautes montagnes et disposée en cercle parfait. Dans la lune, en effet, la cavité est entourée de cimes si élevées que la région extrême, attenante à la partie ténébreuse, se voit illuminée par les rayons solaires, avant que la ligne de partage entre la lumière et l'ombre atteigne le diamètre de la figure elle-même [...] ».


Galilée, Sidereus Nuncius, trad. de E. Namer, Paris : Gauthier-Villars, p. 73 sq.

« Chacun peut se rendre compte avec la certitude des sens, que la Lune est dotée d'une surface non point lisse et polie, mais faite d'aspérités et de rugosités, et que tout comme la face de la Terre elle-même, elle est toute en gros renflements, gouffres profonds et courbures. »

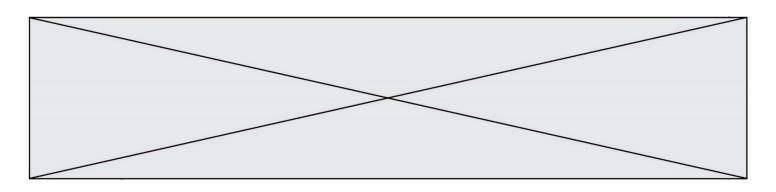
Galilée, Sidereus Nuncius, trad. de E. Namer, Paris: Gauthier-Villars, 1964, p. 116

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	scrip	tio	n :			
Liberté - Égalité - Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	ıméros	figure	ent sur	la con	vocati	on.)]	•								1.1

Figure 1 : dessins de la Lune extraits du livre "Sidereus nuncius" de Galilée.



D'après : https://media4.obspm.fr


Document 2. Observations de Léonard de Vinci

Il y a 500 ans de cela, Léonard de Vinci résolut une très ancienne énigme astronomique : l'origine de la lumière cendrée, cette douce lueur qui baigne la partie non éclairée de la Lune.

Peu de gens le savent, mais une des plus grandes manifestations du génie de Léonard de Vinci n'a rien à voir avec la peinture ou l'ingénierie. Il s'agit en fait d'astronomie : il a compris l'origine de la lumière cendrée.

On peut observer la lumière cendrée chaque nuit où la Lune est en croissant audessus de l'horizon, au coucher du soleil. Entre les pointes du croissant, vous devinez comme une image fantomatique de la Lune. C'est la lumière cendrée, le reflet sur la partie non éclairée de la Lune de la lumière renvoyée par la Terre.

Pendant des milliers d'années, les hommes se sont émerveillés devant cette splendeur sans en comprendre la cause. Et il fallut attendre le 16e siècle pour que Léonard de Vinci la comprenne.

Aujourd'hui, la réponse nous paraît évidente. Quand le Soleil se couche sur la Lune, il se produit exactement la même chose que sur Terre : c'est la nuit. Mais pas une nuit noire... Même quand le Soleil est couché, il y a encore une source de lumière dans la nuit lunaire : la Terre bien sûr !

D'après https://www.cidehom.com/science_at_nasa.php?_a_id=224

Document 3. Calendrier du premier semestre 2021

Les disques noirs représentent les dates de nouvelle Lune et les disques blancs la pleine Lune. Ces dates ont été effacées pour le mois de juin.

Source: https://www.lecalendrier.fr

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tior	n:			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)											1.1

1- Les observations de Galilée (document 1)

- **1-a-** Pour les deux situations (notées Situation 1 et Situation 2) dessinées par Galilée sur la figure 1, représenter sur un schéma les positions de la Terre, de la Lune et du Soleil.
- **1-b-** Dessiner ce que Galilée aurait observé dans les deux situations de la figure 1 si la surface de la Lune était parfaitement lisse.
- **1-c-** Galilée a pu aisément comparer les observations qu'il a réalisées à différents moments de l'année parce que la Lune présente toujours la même face à la Terre.

Voici plusieurs propositions pour expliquer ce phénomène :

- (a) la Lune tourne sur elle-même avec la même période que celle de son mouvement de rotation autour du Soleil :
- (b) la Lune tourne sur elle-même avec la même période que celle de son mouvement de rotation autour de la Terre ;
- (c) la Lune ne tourne pas sur elle-même tout en tournant autour de la Terre,
- (d) la Lune reste fixe dans le ciel pour un observateur terrestre.

Recopier sur votre copie la bonne explication ; justifier votre réponse en vous appuyant sur un schéma clair.

2- Les observations de Léonard de Vinci

- **2-a-** Schématiser, sans souci d'échelle, les positions relatives de la Lune, du Soleil et de la Terre dans la situation décrite par Léonard de Vinci dans le document 2.
- **2-b-** À partir du document 2 et du schéma réalisé dans la question précédente, expliquer comment un individu, sur Terre, peut observer la lumière cendrée de la Lune.
- **2-c-** Expliquer en quoi l'observation de la lumière cendrée montre que l'albedo de la Terre n'est pas nul.

3- Période favorable à l'observation de la lumière cendrée

- **3-a-** À partir des données figurant sur le calendrier du document 3, calculer la durée moyenne, en jour, de l'intervalle de temps qui sépare deux pleines lunes successives.
- **3-b-** En décrivant avec précision le raisonnement utilisé, déterminer une période de 10 jours a priori favorables à l'observation de la lumière cendrée pendant le mois de juin 2021.

Exercice 2 – Niveau première

Thème « Une longue histoire de la matière »

Les diamants, des mines de crayon de haute pression

Sur 10 points

Le graphite et le diamant sont deux minéraux qui possèdent la même composition chimique : ils sont tous deux composés exclusivement de carbone. Cependant, leurs propriétés physiques sont très différentes : alors que le graphite est opaque, friable, avec une conductivité électrique élevée, le diamant, lui, est transparent, très dur et est un isolant électrique.

Partie 1. Structure cristalline du diamant

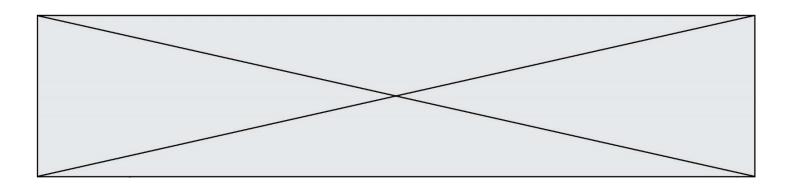
Ne sachant pas à quel type de réseau cristallin appartient le diamant, on fait l'hypothèse qu'il s'agit d'une structure cubique à faces centrées et que les atomes de carbone sont des sphères tangentes.

- **1-** Représenter en perspective cavalière le cube modélisant une maille élémentaire cubique à faces centrées.
- **2-** Représenter une face de ce cube et justifier que le rayon r des sphères modélisant les atomes de carbone et l'arête a du cube sont liés par la relation $r=\frac{a\sqrt{2}}{a}$.
- **3-** Calculer la compacité d'une structure cristalline cubique à faces centrées (volume effectivement occupé par les atomes d'une maille divisé par le volume de la maille). La clarté et l'explicitation du calcul sera prise en compte.
- **4-** À partir d'une mesure de la masse volumique du diamant, on déduit que sa compacité est en fait égale à 0,34. Que peut-on conclure quant à l'hypothèse d'une structure cubique à faces centrées ?

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	scrip	tion	ı :			
	(Les nu	ıméros	figure	nt sur	la con	vocatio	n.)										'	
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :						/												1.1

Partie 2. Les conditions de formation du diamant

Document 1 : l'origine des diamants


Les diamants sont des cristaux de carbone pur, qui ne sont stables qu'à très forte pression. La majorité des diamants ont cristallisé très profondément, dans le manteau terrestre, au sein de veines où circulent des fluides carbonés. Les diamants remontent en surface, dans la quasi-totalité des cas, en étant inclus dans une lave volcanique atypique et très rare : la kimberlite. [...] Le dynamisme éruptif à l'origine des kimberlites est extrêmement explosif. La vitesse d'ascension des kimberlites est de plusieurs dizaines de km/h en profondeur, et les laves arrivent en surface à une vitesse supérieure à la vitesse du son. C'est cette importante vitesse de remontée qui entraîne une décompression et un refroidissement extrêmement rapides des diamants, trop rapides pour qu'ils aient le temps de se transformer en graphite. Les diamants n'ont pas cristallisé dans la lave kimberlitique, mais ne sont que des enclaves arrachées au manteau par la kimberlite sur son trajet ascensionnel.

Source : Adapté de planet-terre.ens-lyon.fr

Document 2 : comparaison des propriétés physiques du graphite et du diamant

Propriétés physiques	Graphite	Diamant
Dureté	Friable (débit en feuillets)	Très dur
Arrangement des atomes de carbone C		
Opacité	Opaque (sert pour les mines de crayon de papier)	Transparent (sert en joaillerie)
Masse volumique (kg.m ⁻³)	2,1 x 10 ³	3,5 x 10 ³

Les réponses aux questions suivantes s'appuieront sur vos connaissances et sur les informations contenues dans les différents documents.

- **5-** Proposer une hypothèse pour expliquer la différence de masse volumique entre le graphite et le diamant.
- **6-** Le diamant est exploité dans des mines qui peuvent être en surface ou à une profondeur maximale d'un kilomètre. Comment expliquer que l'on retrouve des diamants en surface alors que le minéral carboné stable en surface est le graphite ?

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tior	n:			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)											1.1

Exercice 3 - Niveau première

Thème « Son et musique, porteurs d'information »

Enregistrement de fichiers sonores

Sur 10 points

On s'interroge sur la pertinence d'utiliser un smartphone pour télécharger et stocker de la musique. Pour cela, on étudie le lien entre la qualité de la numérisation d'un signal audio et la taille des fichiers numériques correspondants.

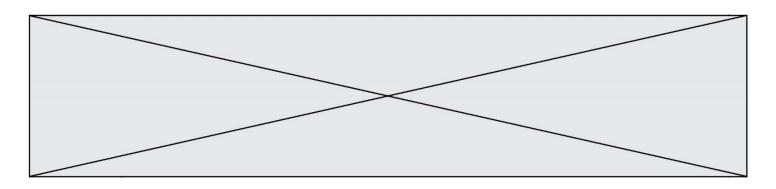
Partie A: échantillonnage et quantification d'un signal audio

Le document 1 donné en annexe et à rendre avec la copie représente une portion de signal enregistré et l'échantillonnage effectué avant la conversion en signal numérique.

1- Préciser la fréquence d'échantillonnage, choisie parmi les valeurs proposées cidessous :

2 000 Hz ; 12 500 Hz ; 26 000 Hz ; 44 100 Hz

2- Après l'échantillonnage du signal audio, on procède à sa quantification. On admet que la tension quantifiée ne prend que des valeurs entières ; la valeur quantifiée d'une tension est l'entier le plus proche de cette tension.


Sur le document 1 en annexe, à rendre avec la copie, représenter la courbe des tensions après quantification.

3- Une plateforme de service de musique en ligne propose de la musique en qualité « 16-Bits / 44.1 kHz ».

Expliquer ce que représentent ces deux valeurs.

4- Combien de niveaux de quantification différents peut-on obtenir lorsque le codage s'effectue sur 16 bits ? Choisir la bonne réponse parmi les propositions suivantes :

16 $2 \times 16 = 32$ $16^2 = 256$ $2^{16} = 65536$

Partie B : taille d'un fichier en haute définition

Dans un studio d'enregistrement, on enregistre un morceau de musique en stéréo haute définition en choisissant un encodage sur 24 bits et une fréquence d'échantillonnage de 192 kHz.

5- La taille T(en bit) d'un fichier audio numérique s'exprime en fonction de la fréquence d'échantillonnage f_e (en Hertz), du nombre n de bits utilisés pour la quantification, de la durée Δt de l'enregistrement et du nombre k de voies d'enregistrement (une en mono, deux en stéréo) selon la relation :

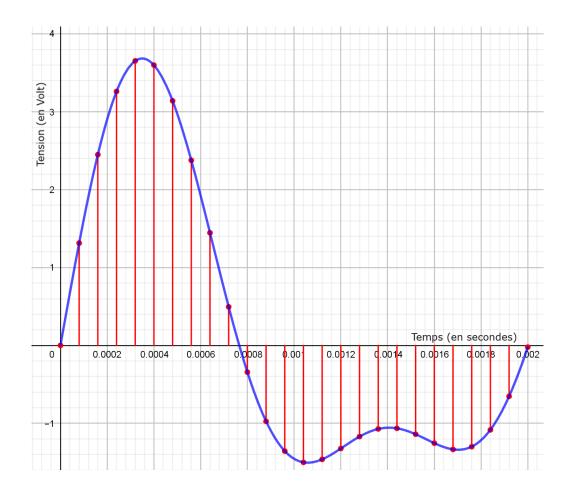
$$T = f_e \times n \times \Delta t \times k$$

Vérifier que l'espace de stockage nécessaire pour enregistrer en stéréo haute définition une seconde de musique est de 1,152 Mo. On rappelle qu'un octet est égal à 8 bits.

- **6-** Avec 200 Mo de stockage, dispose-t-on de suffisamment d'espace pour enregistrer cinq minutes de musique en stéréo haute définition ?
- **7-** Le dispositif d'encodage et de compression FLAC (Free Lossless Audio Codec) permet, par compression sans perte, de réduire de 55 % la taille des fichiers. Son taux de compression, défini comme le rapport de la taille du fichier compressé sur la taille du fichier initial, est donc de 45%.

Avec 200 Mo de stockage, dispose-t-on de suffisamment d'espace pour enregistrer cinq minutes de musique en stéréo haute définition compressées par FLAC ?

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tior	ı :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	uméro:	s figure	ent sur	la con	vocatio	on.)											1.1


Document réponse à rendre avec la copie

Exercice 3

Enregistrement de fichiers sonores

Document 1 - Question 2

Représentation de la tension d'un signal audio analogique en fonction du temps et mesures après échantillonnage.

