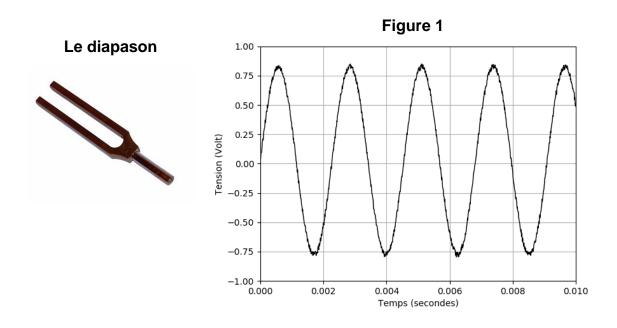

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :							L				N° c	d'ins	crip	tio	1 :			
	(Les nu	ıméros	figure	nt sur	la con	vocatio	on.)		l									
RÉPUBLIQUE FRANÇAISE NÉ(e) le :						/												1.1

<u>Évaluation</u>
CLASSE: Première
VOIE : ⊠ Générale □ Technologique □ Toutes voies (LV)
ENSEIGNEMENT : Enseignement scientifique <u>sans</u> enseignement de mathématiques spécifique
DURÉE DE L'ÉPREUVE : 2h
Niveaux visés (LV) : ø
Axes de programme : ø
CALCULATRICE AUTORISÉE : ⊠Oui □ Non
DICTIONNAIRE AUTORISÉ : □Oui ⊠ Non
☐ Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est nécessaire que chaque élève dispose d'une impression en couleur.
☐ Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour de l'épreuve.
Nombre total de pages : 13

Le candidat <u>traite seulement deux exercices, de son choix,</u> parmi les trois qui sont proposés dans ce sujet.

Il indique son choix en début de copie.

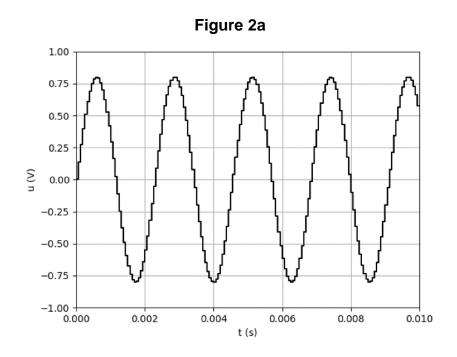

Exercice 1 – Niveau première

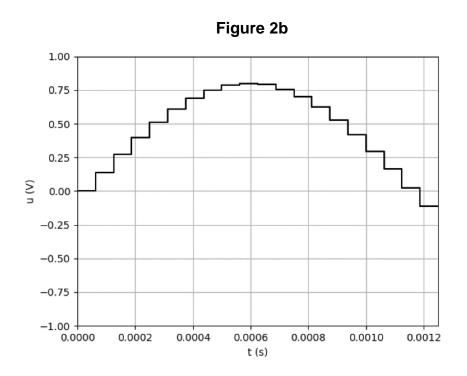
Thème « Son et musique, porteurs d'information »

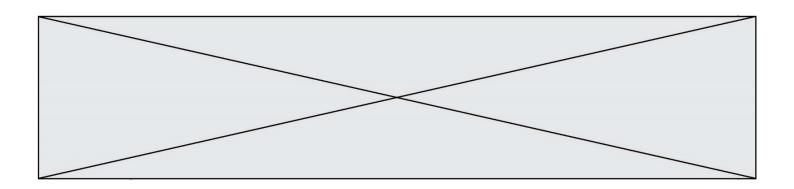
Numérisation et compression d'un signal sonore

Sur 10 points

À l'aide d'un microphone, on a enregistré le signal sonore produit par un diapason. Le début du signal analogique obtenu est représenté sur la figure 1.




- 1- Préciser si ce signal représente un son pur ou un son composé. Justifier.
- 2- À l'aide d'un logiciel, on procède à la numérisation de ce signal.


Le logiciel procède en deux étapes : l'échantillonnage du signal puis sa quantification.

À l'issue de ces deux opérations, on obtient le signal suivant (la figure 2b représente le même signal que celui de la figure 2a, mais enregistré sur une durée plus courte).

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tior	ı :			
	(Les nu	ıméros	figure	nt sur	la con	ocatio	n.)											
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE NÉ(e) le :			/															1.1

- **2-a-** Rappeler en quoi consiste l'échantillonnage d'un signal sonore analogique.
- **2-b-** Déterminer, parmi les valeurs du tableau ci-dessous, en justifiant à l'aide de la Figure 2b, la fréquence d'échantillonnage utilisée pour cet enregistrement.

8 000 Hz	16 000 Hz	24 000 Hz	32 000 Hz

- **3-** Le signal échantillonné a été quantifié sur 16 bits.
 - **3-a-** Préciser le nombre de valeurs différentes que l'on peut coder avec une quantification sur 16 bits.
 - **3-b-** Si la quantification était réalisée sur 8 bits au lieu de 16 bits, indiquer les différences à prévoir sur la qualité sonore et sur la taille du fichier de stockage.

À l'aide d'un logiciel, on enregistre plusieurs morceaux de musique en qualité CD (« Compact Disc » en anglais ou disque compact), ce qui correspond à un enregistrement sur deux voix (stéréo) avec une fréquence d'échantillonnage de 44 100 Hz et une quantification sur 16 bits.

- **4-** Déterminer l'espace nécessaire (en mégaoctets : Mo) pour stocker le fichier obtenu lors de l'enregistrement en qualité CD d'un morceau de musique d'une durée de 3 minutes.
- **5-** Le format mp3 correspond à une compression avec perte d'informations, préciser ce que cela signifie.
- **6-** L'enregistrement d'un second morceau de musique a généré un fichier numérique de 90,25 Mo de données. On l'enregistre au format mp3 pour le compresser. Le fichier mp3 ainsi obtenu a une taille de 7,22 Mo.
 - Calculer le taux de compression.

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° (d'ins	crip	tio	ı :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANCAISE Né(e) le :	(Les nu	uméro	s figure	ent sur	la con	vocatio	on.)											1.1

Exercice 2 - Niveau première

Thème « La Terre, un astre singulier »

Histoire d'eau : deux méthodes historiques permettant d'estimer l'âge de la Terre

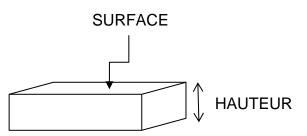
Sur 10 points

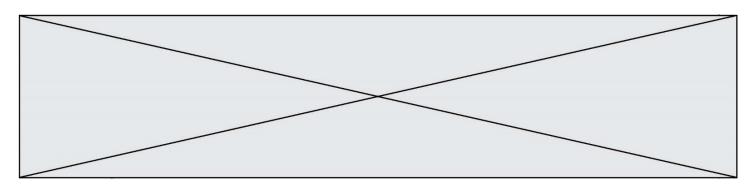
Deux approches ont permis d'estimer l'âge de la Terre au cours du XIX^e siècle. La première utilise la mesure de la salinité de l'eau des océans tandis que la seconde se base sur l'étude des phénomènes de sédimentation et d'érosion.

Partie 1. Estimation de l'âge de la Terre à l'aide de la salinité des eaux de mer

À la toute fin du XIX^e siècle, le physicien irlandais John Joly proposa une méthode d'estimation de l'âge de la Terre basée sur le taux de sel dans les océans : la salinité.

Les eaux de pluie ruissellent à la surface de la Terre et se chargent en sel contenu dans les roches de la croûte terrestre pour ensuite alimenter les rivières qui, à leur tour, se déversent dans les océans. La quantité de sel dissous dans les océans résulterait donc du déversement du sel contenu dans les rivières.


La première question porte sur le calcul de la masse de sel contenue dans les océans.


1-a Calculer, en km³, le volume total des océans modélisés sous la forme d'un parallélépipède rectangle (cf. schéma cicontre).

Données utilisées par John Joly:

- Superficie totale des océans : 360 × 10⁶ km²
- Profondeur moyenne des océans : 3,797 km
- Masse volumique movenne des océans : 1.03 × 109 tonnes par km³
- L'eau des océans contient environ 1.07 % en masse de sel dissous
- Déversement des rivières dans les océans : 2,72 × 10⁴ km³ par an
- Concentration moyenne du sel dissous dans les rivières : 5 250 tonnes par km³
- 1-b Calculer la masse totale des océans en tonnes.

1-c En déduire que la masse de sel contenue dans les océans est de $1,5 \times 10^{16}$ tonnes environ. On fera apparaître le calcul.

- 2- Calculer la masse de sel apportée chaque année par les rivières à l'océan.
- **3-** En déduire, comme l'a fait John Joly, que l'âge de la Terre calculé par cette méthode est d'environ 100 millions d'années.
- **4-** En réalité, une partie du sel dissous subit une sédimentation dans certaines régions littorales et peut également être échangé avec du calcium lors de l'altération sousmarine du basalte. Commenter la validité de la méthode de calcul proposée par John Joly.

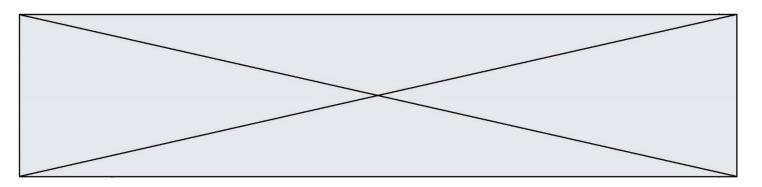
Partie 2. Érosion et sédimentation

Document 1 : un exemple de destruction due à l'érosion

Le "Grind of the Navir" correspond à une ouverture faite par la mer dans une falaise des îles Shetland. Cette ouverture est élargie d'hiver en hiver par la houle qui s'y engouffre.

Extrait de la sixième édition de *Principles of geology* (1833) par Charles Lyell

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tio	1 :			
	(Les nu	ıméros	figure	nt sur	la con	vocatio	n.)											
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :						/												1.1


<u>Document 2</u> : l'argument des temps de sédimentation et d'érosion par Charles Darwin

« Ainsi que Lyell l'a très justement fait remarquer, l'étendue et l'épaisseur de nos couches de sédiments sont le résultat et donnent la mesure de la dénudation¹ que la croûte terrestre a éprouvée ailleurs. Il faut donc examiner par soi-même ces énormes entassements de couches superposées, étudier les petits ruisseaux charriant de la boue, contempler les vagues rongeant les antiques falaises, pour se faire quelque notion de la durée des périodes écoulées [...]. Il faut surtout errer le long des côtes formées de roches modérément dures, et constater les progrès de leur désagrégation. [...] Rien ne peut mieux nous faire concevoir ce qu'est l'immense durée du temps, selon les idées que nous nous faisons du temps, que la vue des résultats si considérables produits par des agents atmosphériques² qui nous paraissent avoir si peu de puissance et agir si lentement. Après s'être ainsi convaincu de la lenteur avec laquelle les agents atmosphériques et l'action des vagues sur les côtes rongent la surface terrestre, il faut ensuite, pour apprécier la durée des temps passés, considérer, d'une part, le volume immense des rochers qui ont été enlevés sur des étendues considérables, et, de l'autre, examiner l'épaisseur de nos formations sédimentaires. [...]

J'ai vu, dans les Cordillères [une chaîne de montagnes], une masse de conglomérats dont j'ai estimé l'épaisseur à environ 10 000 pieds [3 km]; et, bien que les conglomérats aient dû probablement s'accumuler plus vite que des couches de sédiments plus fins, ils ne sont cependant composés que de cailloux roulés et arrondis qui, portant chacun l'empreinte du temps, prouvent avec quelle lenteur des masses aussi considérables ont dû s'entasser. [...] M. Croll démontre, relativement à la dénudation produite par les agents atmosphériques, en calculant le rapport de la quantité connue de matériaux sédimentaires que charrient annuellement certaines rivières, relativement à l'étendue des surfaces drainées, qu'il faudrait six millions d'années pour désagréger et pour enlever au niveau moyen de l'aire totale qu'on considère une épaisseur de 1 000 pieds [305 mètres] de roches. Un tel résultat peut paraitre étonnant, et le serait encore si, d'après quelques considérations qui peuvent faire supposer qu'il est exagéré, on le réduisait à la moitié ou au quart. Bien peu de personnes, d'ailleurs, se rendent un compte exact de ce que signifie réellement un million ».

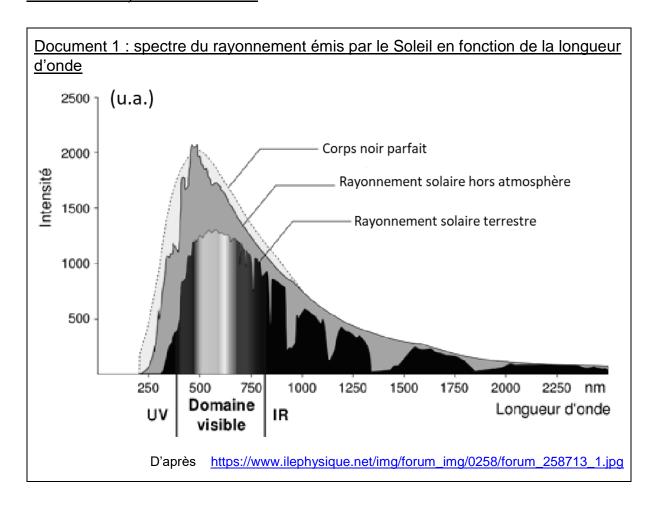
Extrait "Du laps de temps écoulé, déduit de l'appréciation de la rapidité des dépôts et de l'étendue des dénudations", L'origine des espèces, Charles Darwin, p. 393-398 (1859).

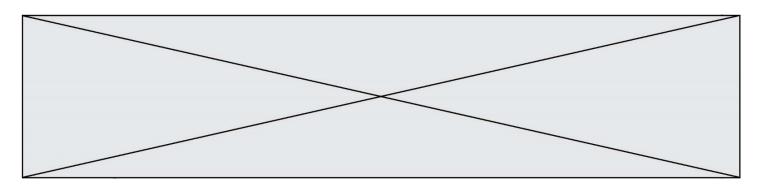
- 1 La dénudation correspond à l'effacement des reliefs par érosion.
- 2 Les agents atmosphériques désignent les agents responsables de l'érosion comme la pluie, le gel, le vent.
- 3 Un conglomérat est une roche issue de la dégradation mécanique d'autres roches et composée de sédiments liés par un ciment naturel.

- **5-** Expliquer la démarche utilisée par C. Darwin permettant d'estimer un âge minimal pour la Terre. La réponse ne doit pas excéder une demi-page.
- **6-** Commenter les résultats obtenus par ces deux méthodes au regard de l'âge de la Terre estimé aujourd'hui.

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° (d'ins	crip	otion	ı :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	uméros	s figure	ent sur	la con	vocatio	on.)											1.1

Exercice 3 - Niveau première

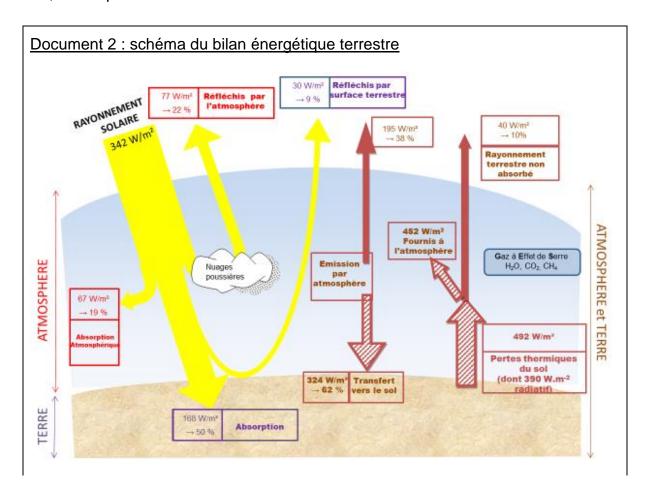

Thème « Le Soleil, notre source d'énergie »


Le Soleil, source de vie sur Terre?

Sur 10 points

Le Soleil émet un rayonnement électromagnétique dans toutes les directions ; une partie de ce rayonnement est reçue par la Terre et constitue une source d'énergie essentielle à la vie. De même, l'atmosphère terrestre contribue à créer des conditions propices à la vie sur Terre.

Partie 1. Le rayonnement solaire


La relation entre la température en degrés Celsius θ (°C) et la température absolue T en kelvins (K) est : T(K) = 273 + θ (°C).

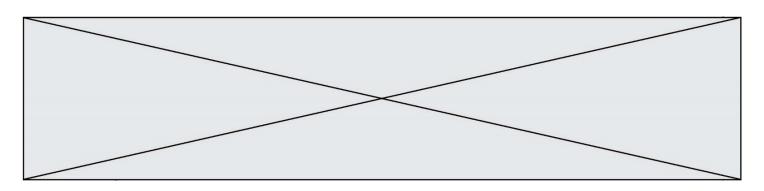
Le Soleil peut être modélisé par un corps noir, qui émet un rayonnement thermique correspondant à une température d'environ 5800 K.

La loi de Wien est la relation entre la température de surface T d'un corps et la longueur d'onde λ_{max} au maximum d'émission :

 $\lambda_{\text{max}} \times T = 2.90 \times 10^{-3} \text{ m.K}$ avec T en kelvins et λ_{max} en mètres.

- **1-** Déterminer approximativement, à partir du document 1, la valeur de la longueur d'onde correspondant au maximum d'intensité du rayonnement solaire hors atmosphère ?
- **2-** Justifier par un calcul que dans l'hypothèse où le soleil est modélisé par un corps noir, sa température de surface est voisine de 5800 K.

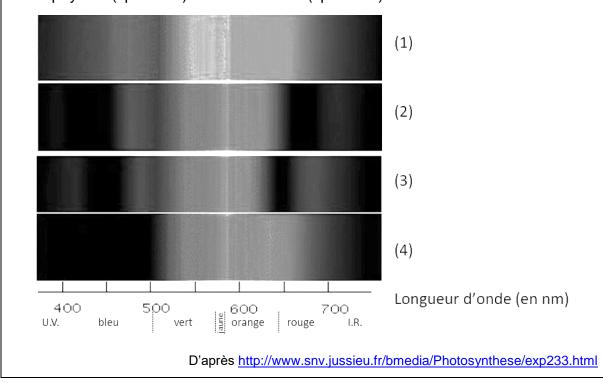
Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° (d'ins	scrip	otior	ı :			
Liberté Égalité Fraternité RÉPUBLIQUE FRANÇAISE NÉ(e) le :	(Les nu	uméro:	s figure	ent sur	la con	vocatio	on.)											1.1


Le schéma précédent présente les flux énergétiques émis, diffusés et réfléchis par les différentes parties de l'atmosphère. L'albédo terrestre moyen est de 30 %.

Les flèches pleines correspondent à des transferts radiatifs. Les flèches hachurées correspondent à des transferts mixtes- radiatifs et non radiatifs.

Sont précisés : les puissances par unité de surface associées à chaque transfert et le pourcentage qu'elles représentent relativement à la puissance solaire incidente (342 W·m⁻²).

Document créé par l'auteur


- 3- Définir l'albédo terrestre à l'aide de vos connaissances.
- **4-** À partir des valeurs indiquées dans le document 2, montrer que le bilan énergétique à la surface de la Terre est équilibré, autrement dit que la puissance que la Terre reçoit est égale à celle qu'elle fournit à l'extérieur. Montrer que cela est également le cas pour le système global Terre-atmosphère.

Partie 2. La conversion de l'énergie solaire

Document 3 : spectre des chlorophylles

Les organismes chlorophylliens renferment de nombreux pigments photosynthétiques comme les chlorophylles a et b, et les caroténoïdes. En faisant traverser par de la lumière blanche (spectre 1), des solutions contenant chacune un seul de de ces pigments, on obtient les spectres suivants : chlorophylle a (spectre 2), chlorophylle b (spectre 3) et caroténoïdes (spectre 4).

5- Pour chacune des propositions suivantes (5.1 à 5.3), indiquer la bonne réponse.

5-1- Ces différents spectres nous permettent alors :

- a- de déterminer la température de la plante.
- b- d'en déduire la composition chimique des pigments.
- c- d'en déduire les longueurs d'ondes absorbées par chaque pigment photosynthétique.
- d- d'en déduire la quantité de chaque pigment.

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tio	n :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	ıméros	figure	nt sur	la con	vocatio	n.)											1.1

- 5-2- Dans la cellule, l'énergie solaire captée par les pigments photosynthétiques :
 - a- permet la synthèse de la matière minérale.
 - b- permet la synthèse de la matière organique.
 - c- permet la consommation de matière organique.
 - d- permet la consommation de dioxygène.
- **5-3-** L'être humain est dépendant de l'énergie solaire utilisée par les plantes pour son fonctionnement car, en présence de lumière et lors de la photosynthèse, les plantes produisent :
 - a- matière organique et O2.
 - b- matière organique et CO2.
 - c- matière minérale et O₂.
 - d- matière minérale et CO2.