
Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :							L				N° c	d'ins	crip	tior	1 :			
	(Les nu	ıméros	figure	nt sur	la con	vocatio	on.)		l									
RÉPUBLIQUE FRANÇAISE NÉ(e) le :						/												1.1

<u>Évaluation</u>
CLASSE : Première
VOIE : ⊠ Générale □ Technologique □ Toutes voies (LV)
ENSEIGNEMENT : Enseignement scientifique <u>sans</u> enseignement de mathématiques spécifique
DURÉE DE L'ÉPREUVE : 2h
Niveaux visés (LV) : Ø
Axes de programme : ø
CALCULATRICE AUTORISÉE : ⊠Oui □ Non
DICTIONNAIRE AUTORISÉ: □Oui ⊠ Non
☑ Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est nécessaire que chaque élève dispose d'une impression en couleur.
\square Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour de l'épreuve.
Nombre total de pages : 13

Le candidat <u>traite seulement deux exercices, de son choix,</u> parmi les trois qui sont proposés dans ce sujet.

Il indique son choix en début de copie.

Exercice 1 - Niveau première

Thème « La Terre, un astre singulier »

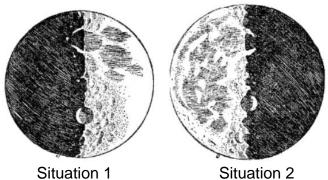
La lumière cendrée de la Lune

Sur 10 points

Périodiquement la Lune nous présente un aspect des plus surprenants. En plus d'une partie fortement lumineuse correspondante à la phase lunaire, il est possible d'apercevoir l'autre partie de la Lune. La lumière qui nous parvient de cette partie plus sombre est appelée « lumière cendrée de la Lune » (voir la photographie).

Document 1. Observations de Galilée

« Je veux noter aussi un fait que j'ai observé, non sans un certain émerveillement : presque au centre de la Lune se trouve une cavité plus grande que toute autre et parfaitement circulaire [...] : dans son obscurcissement et dans son illumination, elle présenterait le même aspect que celui de la Terre dans une région comparable à la Bohème, si cette région était de tous côtés entourés de hautes montagnes et disposée en cercle parfait. Dans la lune, en effet, la cavité est entourée de cimes si élevées que la région extrême, attenante à la partie ténébreuse, se voit illuminée par les rayons solaires, avant que la ligne de partage entre la lumière et l'ombre atteigne le diamètre de la figure elle-même [...] ».

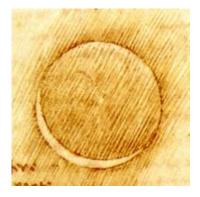

Galilée, Sidereus Nuncius, trad. de E. Namer, Paris: Gauthier-Villars, p. 73 sq.

« Chacun peut se rendre compte avec la certitude des sens, que la Lune est dotée d'une surface non point lisse et polie, mais faite d'aspérités et de rugosités, et que tout comme la face de la Terre elle-même, elle est toute en gros renflements, gouffres profonds et courbures. »

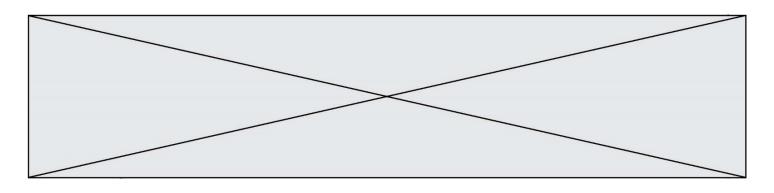
Galilée, Sidereus Nuncius, trad. de E. Namer, Paris: Gauthier-Villars, 1964, p. 116

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tior	ı :			
	(Les nu	uméros	figure	ent sur	la con	vocatio	n.)		,									
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :																		1.1

Figure 1 : dessins de la Lune extraits du livre "Sidereus nuncius" de Galilée.


ituation i Situation 2

D'après : https://media4.obspm.fr


Document 2. Observations de Léonard de Vinci

Il y a 500 ans de cela, Léonard de Vinci résolut une très ancienne énigme astronomique : l'origine de la lumière cendrée, cette douce lueur qui baigne la partie non éclairée de la Lune.

Peu de gens le savent, mais une des plus grandes manifestations du génie de Léonard de Vinci n'a rien à voir avec la peinture ou l'ingénierie. Il s'agit en fait d'astronomie : il a compris l'origine de la lumière cendrée.

On peut observer la lumière cendrée chaque nuit où la Lune est en croissant audessus de l'horizon, au coucher du soleil. Entre les pointes du croissant, vous devinez comme une image fantomatique de la Lune. C'est la lumière cendrée, le reflet sur la partie non éclairée de la Lune de la lumière renvoyée par la Terre.

Pendant des milliers d'années, les hommes se sont émerveillés devant cette splendeur sans en comprendre la cause. Et il fallut attendre le 16e siècle pour que Léonard de Vinci la comprenne.

Aujourd'hui, la réponse nous paraît évidente. Quand le Soleil se couche sur la Lune, il se produit exactement la même chose que sur Terre : c'est la nuit. Mais pas une nuit noire... Même quand le Soleil est couché, il y a encore une source de lumière dans la nuit lunaire : la Terre bien sûr !

D'après https://www.cidehom.com/science_at_nasa.php?_a_id=224

Document 3. Calendrier du premier semestre 2021

Les disques noirs représentent les dates de nouvelle Lune et les disques blancs la pleine Lune. Ces dates ont été effacées pour le mois de juin.

Source: https://www.lecalendrier.fr

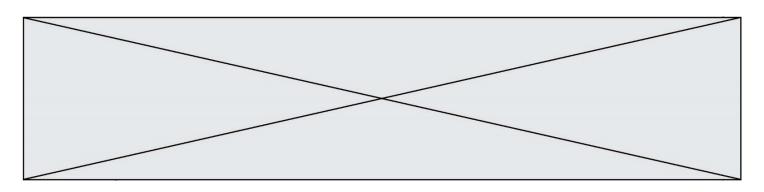
Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tio	n :			
	(Les nu	uméros I	figure	ent sur	la con	vocatio	on.)		1									
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :																		1.1

1- Les observations de Galilée (document 1)

- **1-a-** Pour les deux situations (notées Situation 1 et Situation 2) dessinées par Galilée sur la figure 1, représenter sur un schéma les positions de la Terre, de la Lune et du Soleil.
- **1-b-** Dessiner ce que Galilée aurait observé dans les deux situations de la figure 1 si la surface de la Lune était parfaitement lisse.
- **1-c-** Galilée a pu aisément comparer les observations qu'il a réalisées à différents moments de l'année parce que la Lune présente toujours la même face à la Terre.

Voici plusieurs propositions pour expliquer ce phénomène :

- (a) la Lune tourne sur elle-même avec la même période que celle de son mouvement de rotation autour du Soleil :
- (b) la Lune tourne sur elle-même avec la même période que celle de son mouvement de rotation autour de la Terre ;
- (c) la Lune ne tourne pas sur elle-même tout en tournant autour de la Terre,
- (d) la Lune reste fixe dans le ciel pour un observateur terrestre.


Recopier sur votre copie la bonne explication ; justifier votre réponse en vous appuyant sur un schéma clair.

2- Les observations de Léonard de Vinci

- **2-a-** Schématiser, sans souci d'échelle, les positions relatives de la Lune, du Soleil et de la Terre dans la situation décrite par Léonard de Vinci dans le document 2.
- **2-b-** À partir du document 2 et du schéma réalisé dans la question précédente, expliquer comment un individu, sur Terre, peut observer la lumière cendrée de la Lune.
- **2-c-** Expliquer en quoi l'observation de la lumière cendrée montre que l'albedo de la Terre n'est pas nul.

3- Période favorable à l'observation de la lumière cendrée

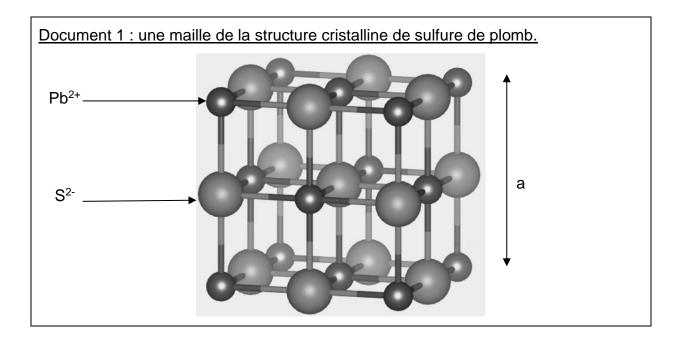
- **3-a-** À partir des données figurant sur le calendrier du document 3, calculer la durée moyenne, en jour, de l'intervalle de temps qui sépare deux pleines lunes successives.
- **3-b-** En décrivant avec précision le raisonnement utilisé, déterminer une période de 10 jours a priori favorables à l'observation de la lumière cendrée pendant le mois de juin 2021.


Exercice 2 – Niveau première

Thème « Une longue histoire de la matière »

Géode de galène

Sur 10 points


Le plomb est présent à l'état naturel sous diverses formes dans la croûte terrestre. On le trouve principalement dans la galène, qui en contient 86,6 % en masse. Cet élément a permis de donner une estimation précise de l'âge de la Terre.

Partie 1 : la galène

- **1-** La galène est un solide minéral composé en majorité de sulfure de plomb qui possède une structure cristalline de type chlorure de sodium constituée des ions plomb Pb²⁺ et des ions sulfure S²⁻ (voir document 1 page suivante).
- 1-a- Déterminer le type de réseau cristallin formé par les ions plomb Pb2+.
- **1-b-** Préciser les différentes positions occupées par les ions sulfure S²⁻ dans la maille.

Modèle CCYC : ©D Nom de famille (Suivi s'il y a lieu, d	(naissance):																		
Pre	énom(s) :																		
N° c	andidat :											N° c	l'ins	crip	tior	n :			
		(Les nu	ıméros	figure	nt sur	la con	vocatio	n.)										•	
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE	Né(e) le :			/															1.1

- **2-a-** Justifier qu'il y a quatre ions plomb Pb^{2+} et quatre ions sulfure S^{2-} dans la maille.
- **2-b-** Choisir la formule chimique du sulfure de plomb parmi les quatre proposées cidessous et la recopier sur la copie.

A: Pb₂S

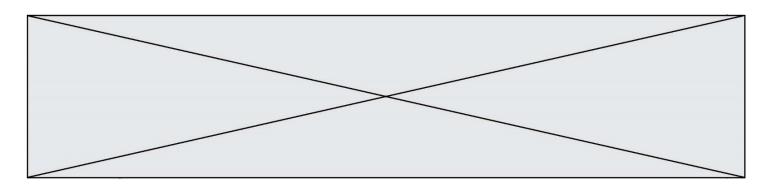
B: PbS₂

C: PbS

D: PbS₄

3- La forme géométrique de la maille et la nature des ions qui la constituent sont à l'origine des propriétés macroscopiques du cristal, notamment de sa masse volumique.

En utilisant les données ci-dessous, calculer la masse et le volume d'une maille.


En déduire la masse volumique du sulfure de plomb.

<u>Données</u>:

Masse d'un ion plomb Pb²⁺: $m_{Pb}^{2+} = 3,44 \times 10^{-22} g$.

Masse d'un ion sulfure S^{2-} : $ms^{2-} = 5,33 \times 10^{-23}$ g.

Longueur d'une arête de la maille : a =5,94 \times 10⁻⁸ cm.

4- Outre ses utilisations industrielles, la galène peut servir d'objet de décoration. Elle est alors vendue sous forme de géode (cavité rocheuse tapissée de cristaux).

Un vendeur de géodes de galène veut estimer la qualité de son stock de géodes. Pour cela, il effectue le prélèvement d'un lot de cinquante géodes dans son stock et détermine la masse volumique de chacune d'elle. Par souci de simplification, il se limite à étudier ce seul critère.

Il obtient les résultats suivants :

Masse volumique (en g.cm ⁻³)	7,30	7,35	7,40	7,45	7,50	7,55	7,60
Effectif	1	1	9	10	11	13	5

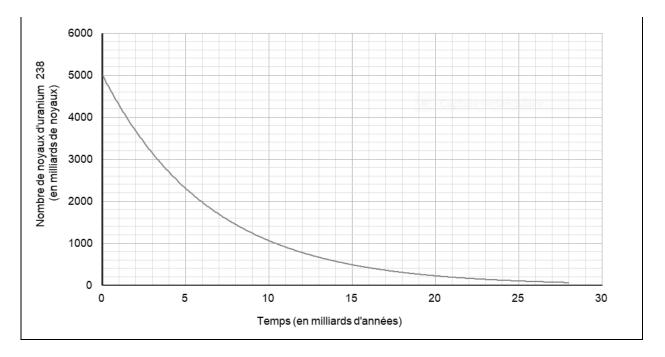
Pour être conforme, un lot de géodes doit contenir au moins 95% de géodes dont la masse volumique est comprise entre 7,40 g.cm⁻³ et 7,60 g.cm⁻³.

Le lot précédent est-il conforme ? Justifier la réponse.

Partie 2 : détermination de l'âge de la Terre

Dès le XVI^e siècle, les scientifiques ont cherché à déterminer l'âge des roches. C'est la découverte de la radioactivité à la fin du XIX^e siècle qui leur a permis de dater avec une plus grande fiabilité de nombreux échantillons de roches prélevés dans la croûte terrestre.

Document 2 : principe de la datation uranium-plomb

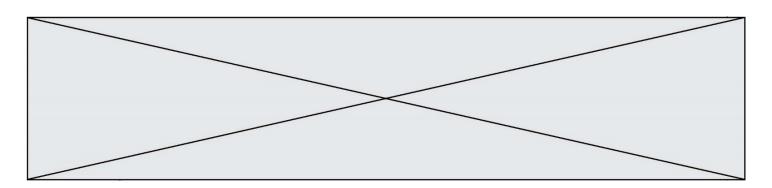

On fait l'hypothèse suivante : on considère qu'il n'y a pas de plomb 206 dans la roche au moment de sa formation, mais qu'elle contient des noyaux d'uranium 238 radioactifs.

On sait qu'un noyau d'uranium 238 radioactif se transforme en un noyau plomb 206 stable à la suite d'une série de désintégrations successives.

L'équation globale est : $^{238}_{92}U \rightarrow ^{206}_{82}Pb + 6^{0}_{-1}e + 8^{4}_{}He$

En mesurant la quantité de plomb 206 dans un échantillon de roche ancienne, on peut déterminer l'âge de l'échantillon de roche à partir de la courbe de décroissance radioactive du nombre de noyaux d'uranium 238.

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tior	า :			
	(Les nu	ıméros	figure	nt sur	la con	vocatio	n.)		_	•							1	
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :			/															1.1



Ainsi, si on considère qu'un échantillon de roche contenant à la fois du plomb 206 et de l'uranium 238 a le même âge que la Terre, il est possible d'utiliser la datation uranium-plomb pour donner une estimation de l'âge de la Terre.

- **5-** Donner la composition d'un noyau de plomb 206.
- **6-** On note $N_U(t)$ et $N_{Pb}(t)$ les nombres de noyaux d'uranium 238 et de plomb 206 présents dans l'échantillon à la date t à laquelle la mesure est réalisée et $N_U(0)$ le nombre de noyaux d'uranium 238 que contenait la roche au moment de sa formation.
- **6-a-** Justifier la relation $N_U(0) = N_U(t) + N_{Pb}(t)$.
- **6-b-** Déterminer graphiquement N_∪(0).
- **6-c-** Le nombre de noyaux de plomb 206 mesuré dans la roche à la date t est égal à $N_{Pb}(t) = 2,5.10^{12}$ noyaux.

Calculer le nombre N_U(t) de noyaux d'uranium présents à la date t.

7- En déduire une estimation de l'âge de la Terre. Expliquer la démarche employée.

Exercice 3 - Niveau première

Thème « Son et musique, porteurs d'information »

Enregistrement de fichiers sonores

Sur 10 points

On s'interroge sur la pertinence d'utiliser un smartphone pour télécharger et stocker de la musique. Pour cela, on étudie le lien entre la qualité de la numérisation d'un signal audio et la taille des fichiers numériques correspondants.

Partie A: échantillonnage et quantification d'un signal audio

Le document 1 donné en annexe et à rendre avec la copie représente une portion de signal enregistré et l'échantillonnage effectué avant la conversion en signal numérique.

1- Préciser la fréquence d'échantillonnage, choisie parmi les valeurs proposées cidessous :

2 000 Hz; 12 500 Hz; 26 000 Hz; 44 100 Hz

2- Après l'échantillonnage du signal audio, on procède à sa quantification. On admet que la tension quantifiée ne prend que des valeurs entières ; la valeur quantifiée d'une tension est l'entier le plus proche de cette tension.

Sur le document 1 en annexe, à rendre avec la copie, représenter la courbe des tensions après quantification.

3- Une plateforme de service de musique en ligne propose de la musique en qualité « 16-Bits / 44.1 kHz ».

Expliquer ce que représentent ces deux valeurs.

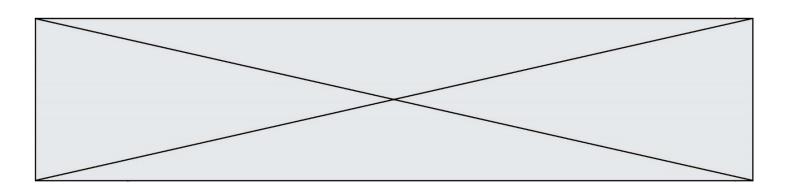
4- Combien de niveaux de quantification différents peut-on obtenir lorsque le codage s'effectue sur 16 bits ? Choisir la bonne réponse parmi les propositions suivantes :

16 $2 \times 16 = 32$ $16^2 = 256$ $2^{16} = 65536$

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tior	n:			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)											1.1

Partie B : taille d'un fichier en haute définition

Dans un studio d'enregistrement, on enregistre un morceau de musique en stéréo haute définition en choisissant un encodage sur 24 bits et une fréquence d'échantillonnage de 192 kHz.


5- La taille T(en bit) d'un fichier audio numérique s'exprime en fonction de la fréquence d'échantillonnage f_e (en Hertz), du nombre n de bits utilisés pour la quantification, de la durée Δt de l'enregistrement et du nombre k de voies d'enregistrement (une en mono, deux en stéréo) selon la relation :

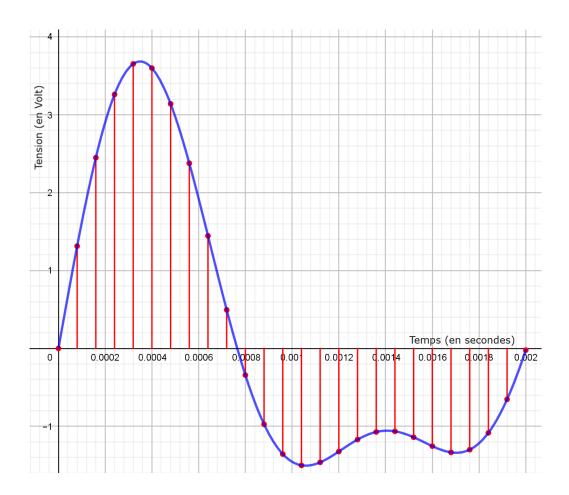
$$T = f_e \times n \times \Delta t \times k$$

Vérifier que l'espace de stockage nécessaire pour enregistrer en stéréo haute définition une seconde de musique est de 1,152 Mo. On rappelle qu'un octet est égal à 8 bits.

- **6-** Avec 200 Mo de stockage, dispose-t-on de suffisamment d'espace pour enregistrer cinq minutes de musique en stéréo haute définition ?
- **7-** Le dispositif d'encodage et de compression FLAC (Free Lossless Audio Codec) permet, par compression sans perte, de réduire de 55 % la taille des fichiers. Son taux de compression, défini comme le rapport de la taille du fichier compressé sur la taille du fichier initial, est donc de 45%.

Avec 200 Mo de stockage, dispose-t-on de suffisamment d'espace pour enregistrer cinq minutes de musique en stéréo haute définition compressées par FLAC ?

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° (d'ins	crip	otion	ı :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	uméros	s figure	ent sur	la con	vocatio	on.)											1.1


Document réponse à rendre avec la copie

Exercice 3

Enregistrement de fichiers sonores

Document 1 - Question 2

Représentation de la tension d'un signal audio analogique en fonction du temps et mesures après échantillonnage.

