ÉVALUATION COMMUNE 2020 www.vecteurbac.fr

E3C: □ E3C1 ⊠ E3C2 □ E3C3 **CLASSE:** Première

VOIE: ⊠ Générale **ENSEIGNEMENT: physique-chimie**

CALCULATRICE AUTORISÉE : ⊠Oui □ Non **DURÉE DE L'ÉPREUVE:** 1 h

Étude d'une structure en béton : de la pose à l'analyse

1.1 Le point A est au niveau de l'air, la pression est donc celle de la pression atmosphérique. $P_A=1,0.10^5 Pa.$

1.2

$$P_B - P_A = \rho \times g \times (z_B - z_A)$$

$$P_B = \rho \times g \times (z_B - z_A) + P_A$$

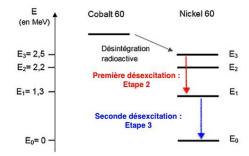
$$P_B = \rho \times g \times (z_B - z_A) + P_A$$

$$P_B = 2.40.10^3 \times 9.81 \times (0 - (-4.5)) + 1.0.10^5$$

$$P_B = 2,06 \times 10^5 \text{ Pa}.$$

1.3 Pour choisir le coffrage il faut calculer la pression relative.

$$P_{relative} = P_B - P_{atm}$$


$$P_{relative} = P_B - P_{atm}$$

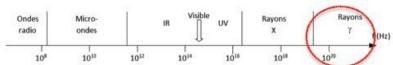
$$P_{relative} = 2,06 \times 10^5 - 1,0.10^5$$

$$P_{\text{relative}} = 1,06 \times 10^5 \text{ Pa} = 106 \text{ KPa}$$

Il faut donc choisir le Cosfort métal car c'est le seul pouvant résister à cette pression relative.

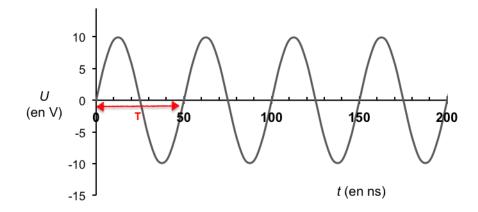
2. 2.1

2.2


$$E = E_3 - E_1 = 2.5 - 1.3 = 1.2 Mev$$

Or 1 eV =
$$1.602 \times 10^{-19}$$
 J.

$$E = 1.2.10^6 \times 1.602.10^{-19} = 1.9.10^{-13}$$


2.3.

$$\begin{split} E &= h \times \nu \\ \nu &= \frac{E}{h} \\ \nu &= \frac{_{1,9.10^{-13}}}{_{6,63.10^{-34}}} = 2,9.\,10^{20} \text{Hz} \end{split}$$

Gammagraphie car ce sont des rayons gamma sui sont utilisés

2.4

T=50 ns

$$f = \frac{1}{T}$$

 $f = \frac{1}{50.10^{-9}} = 2,0.10^{7} Hz = 20 MHz$

2.5

Pour qu'un défaut dans la structure soit détectable, il faut qu'il ait une taille au moins égale à la moitié de la longueur d'onde ultrasonore.

Calculons la longueur d'onde ultrasonore :

$$\lambda = \frac{c}{f}$$

$$\lambda = \frac{4500}{2.0.10^7} = 2,3.10^{-4} \text{m} = 0,23 \text{ mm}$$

Calculons la moitié de la longueur d'onde :

$$\frac{\lambda}{2} = \frac{0.23}{2} = 0.13 \text{ mm}$$

La taille de la fissure 0,3 mm est supérieure à la moitié de la longueur d'onde ultrasonore. La fissure est donc détectable.

2.6

Il faut déterminer si le morceau de béton compris entre les récepteurs R2 et R3 ausculté doit subir des réparations.

Pour cela il faut calculer la vitesse des ultrasons.

$$v = \frac{d}{\Delta t}$$

$$v = \frac{60.10^{-2} - 40.10^{-2}}{195.10^{-6} - 121.10^{-6}} = 2700 \text{ m. s}^{-1}$$

Le béton est de qualité médiocre, il doit donc subir des réparations.