Métropole juin 2021 Sujet 1

CORRECTION Yohan Atlan © https://www.vecteurbac.fr/

CLASSE: Terminale **EXERCICE B**: au choix du candidat (5 points)

VOIE: ⊠ Générale **ENSEIGNEMENT: physique-chimie**

DURÉE DE L'ÉPREUVE : 0h53 CALCULATRICE AUTORISÉE : ⊠Oui sans mémoire, « type collège »

EXERCICE B - DEGRÉ D'HYDRATATION DU CHLORURE DE MAGNÉSIUM

 $MgCl_2, 4.5H_2O_{(s)} \rightarrow Mg^{2+}_{(aq)} + 2Cl^{-}_{(aq)} + 4.5 H_2O_{(l)}$ 1.

La solution S₂ est obtenue par dilution d'un facteur cinq de la solution S₁. Ainsi le volume V_2 est 5 fois plus grand que V_1 .

Or on désire V₂=100mL, on doit donc prendre V₁=20mL

Protocole:

- Verser la solution mère dans un bécher
- Prélever à l'aide d'une pipette jaugée V₁=20mL de la solution mère
- Introduire V dans une fiole jaugée V₂=100mL,
- Ajouter de l'eau distillée jusqu'au trait de jauge
- Homogénéiser la solution
- Les espèces spectatrices ne réagissent pas lors de la réaction. 3.
- 4. $Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$

Avant l'équivalence :

- les ions Ag⁺ sont ajoutés et consommés immédiatement, ils constituent le réactif limitant, la concentration des ions Ag⁺ est nulle.
- les ions Cl⁻ sont consommés, la concentration des ions Cl⁻ diminue.
- \triangleright les ions NO_3^- sont ajoutés, ils ne réagissent pas, la concentration des ions NO₃ augmente.
- les ions Mg²⁺ sont présents initialement, ils ne réagissent pas, la concentration des ions Mg²⁺ ne change pas.

Or $\lambda_{NO_3^-} < \lambda_{Cl^-}$, σ diminue donc avant l'équivalence.

Après l'équivalence :

- les ions Ag⁺ sont ajoutés et ne sont plus consommés, la concentration des ions Ag⁺ augmente.

- entration des ions Mg² ne change pas.

eensens and deep sens 7.8 and menter	Ag	
les ions Cl ⁻ n'existent plus, la concentration des ions Cl ⁻ est nulle.	Cl	0
les ions NO_3^- sont ajoutés, ils ne réagissent pas, la concentration des ions NO_3^- augmente.	NO ₃	7
les ions Mg ²⁺ sont présents initialement, ils ne réagissent pas, la	Mg ²⁺	=
concentration des ions Mg ²⁺ ne change pas.		

La concentration des ions augmente, ainsi σ augmente donc après l'équivalence.

ions	Avant l'equivalence
Ag ⁺	0
Cl	¥
NO_3^-	×
Mg ²⁺	=

Après l'équivalence

lons

5. A l'équivalence :

$$\frac{n_{Cl^{-}}^{i}}{1} = \frac{n_{Ag^{+}}^{eq}}{1}$$

$$[Cl^-]_2 \times V_2 = C_S \times V_{eq}$$

$$[Cl^-]_2 = \frac{C_S \times V_{eq}}{V_2}$$

$$[Cl^{-}]_{2} = \frac{5,0.10^{-2} \times 9,0.10^{-3}}{10,0.10^{-3}} = 4,5.10^{-2} \text{mol. L}^{-1}$$

Diluée 5 fois : $[Cl^-]_1 = 5[Cl^-]_2$

$${\rm [Cl^-]}_1 = 5 \times 4{,}5.\,10^{-2} = 0{,}225~{\rm mol.}\,{\rm L^{-1}}$$

D'après la question 1 : $[Cl^-]_1 = 2c$

$$c = \frac{[Cl^-]_1}{2} = \frac{0,225}{2} = 0,113 \text{ mol. } L^{-1}$$

$$m = n \times M$$

$$m = c \times V \times M$$

$$m = 0.113 \times 1.0 \times 95.3 = 10.7 g$$

$$\mathbf{6.} \quad \mathbf{m}_{\text{sachet}} = \mathbf{m}_{\text{MgCl}_2} + \mathbf{m}_{\text{H}_2\text{O}}$$

$$m_{H_2O} = m_{sachet} - m_{MgCl_2}$$

$$m_{\rm H_2O} = 20.3 - 10.8 = 9.5 \,\rm g$$

$$n_{H_2O} = \frac{m_{H_2O}}{M_{H_2O}} = \frac{9,5}{2 \times 1,0 + 16,0} = 0,53 \text{ mol}$$

$$n_{\text{MgCl}_2} = \frac{m_{\text{MgCl}_2}}{M_{\text{MgCl}_2}} = \frac{10.7}{95.3} = 0.11 \text{ mol}$$

 $MgCl_2, xH_20$

1 mol de MgCl ₂	x moles de H ₂ 0
$0,11 \; \mathrm{mol} \; \mathrm{de} \; \mathrm{MgCl}_2$	0,53 moles de H ₂ 0

$$x = \frac{0.53 \times 1}{0.11} = 4.8$$

Le degré est conforme à l'indication.