Centres étrangers 2022 sujet 1

CORRECTION Yohan Atlan © www.vecteurbac.fr

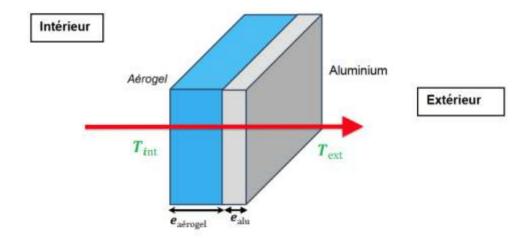
CLASSE : Terminale **EXERCICE III :** au choix du candidat (10 points)

VOIE : ⊠Générale

ENSEIGNEMENT DE SPÉCIALITÉ: Sciences de l'ingénieur- Partie Sciences physiques

DURÉE DE L'EXERCICE : 30 min **CALCULATRICE AUTORISÉE :** ⊠ Oui « type collège »

EXERCICE III - Isolation thermique du rover Persévérance (10 points)


1.

Le transfert thermique s'effectue du corps chaud vers le corps froid.

Mars possède une température de surface moyenne de - 53 °C, Une température moyenne de 10 °C est maintenue au cœur du royer :

Le transfert thermique s'effectue de l'intérieur (cœur du rover) vers l'air extérieur.

Schématiser le sens du transfert thermique.

2.

Le principal mode de transfert thermique intervenant dans cette situation est la conduction.

D'autres modes de transfert thermique existent :

- Convection
- > Rayonnement

$$\begin{split} R_{th}(\text{aluminium}) &= \frac{e_{\text{aluminium}}}{\lambda_{\text{aluminium}} \times S} \\ S &= L \times \ell \\ R_{th}(\text{aluminium}) &= \frac{e_{\text{aluminium}}}{\lambda_{\text{aluminium}} \times L \times \ell} \\ R_{th}(\text{aluminium}) &= \frac{0,85. \, 10^{-2}}{237 \times 40. \, 10^{-2} \times 15. \, 10^{-2}} \\ R_{th}(\text{aluminium}) &= 6,0. \, 10^{-4} \, \text{K.W}^{-1} \end{split}$$

$$\begin{split} & \varphi_{aluminium} = \frac{|T_2 - T_1|}{R_{th}(aluminium)} \\ & \varphi_{aluminium} = \frac{|(-53) - 10|}{6,0.10^{-4}} \\ & \varphi_{aluminium} = 1,1.10^5 \text{W} \end{split}$$

5.

Résistance thermique de la couche d'aérogel

$$R_{th}(\text{a\'erogel}\,) = \frac{e_{\text{a\'erogel}}}{\lambda_{\text{a\'erogel}} \times S}$$

$$S = L \times \ell$$

$$\begin{split} R_{th}(\text{a\'erogel}\,) &= \frac{e_{\text{a\'erogel}}}{\lambda_{\text{a\'erogel}} \times L \times \ell} \\ R_{th}(\text{a\'erogel}\,) &= \frac{3,5.\,10^{-2}}{0,0015 \times 40.\,10^{-2} \times 15.\,10^{-2}} \\ R_{th}(\text{a\'erogel}\,) &= 3,9.\,10^2\,\text{K.W}^{-1} \end{split}$$

Résistance thermique de l'ensemble.

$$R_{th}(ensemble) = R_{th}(aluminium) + R_{th}(a\acute{e}rogel)$$

$$R_{th}(ensemble) = 6.0 \cdot 10^{-4} + 3.9 \cdot 10^{2}$$

$$R_{th}(ensemble) = 3.9.10^2 \text{ K. W}^{-1}$$

6.

$$\begin{split} \varphi_{ensemble} &= \frac{|T_2 - T_1|}{R_{th}(ensemble)} \\ \varphi_{ensemble} &= \frac{|(-53) - 10|}{3.9.10^2} \\ \varphi_{ensemble} &= 1.6.10^{-1} \text{W} \end{split}$$

$$\frac{\phi_{\text{aluminium}}}{\phi_{\text{ensemble}}} = \frac{1.1.10^5}{1.6.10^{-1}} = 6.9.10^5$$

 $\varphi_{ensemble} \ll \varphi_{aluminium}$: la couche d'aérogel permet de diminuer drastiquement le flux thermique ; Elle joue très bien son rôle d'isolant thermique.

7.

$$\phi_{\rm ensemble} = \frac{|T_2 - T_1|}{R_{\rm th}(\rm ensemble)}$$

Or
$$R_{th}$$
(ensemble) = R_{th} (aluminium) + R_{th} (aérogel)

$$\phi_{ensemble} = \frac{|T_2 - T_1|}{R_{th}(aluminium) + R_{th}(a\acute{e}rogel)}$$

$$R_{th}(aluminium) = \frac{e_{aluminium}}{\lambda_{aluminium} \times L \times \ell}$$

$$R_{th}(\text{a\'erogel}\,) = \frac{e_{\text{a\'erogel}}}{\lambda_{\text{a\'erogel}} \times L \times \ell}$$

$$\begin{split} \varphi_{ensemble} &= \frac{|T_2 - T_1|}{\frac{e_{aluminium}}{\lambda_{aluminium}} \times L \times \ell} + \frac{e_{a\acute{e}rogel}}{\lambda_{a\acute{e}rogel} \times L \times \ell} \\ \varphi_{ensemble} &= \frac{|T_2 - T_1|}{\left(\frac{e_{aluminium}}{\lambda_{aluminium}} + \frac{e_{a\acute{e}rogel}}{\lambda_{a\acute{e}rogel}}\right) \times \frac{1}{L \times \ell} \end{split}$$

$$\phi_{ensemble} = \frac{|T_2 - T_1|}{\left(\frac{e_{aluminium}}{\lambda_{aluminium}} + \frac{e_{a\acute{e}rogel}}{\lambda_{a\acute{e}rogel}}\right)} \times L \times \ell$$

 $\phi_{ensemble}$ est proportionnel à $L \times \ell$, ainsi, lorsqu'on double la surface (longueur × largeur) de l'ensemble (pièce en aluminium et couche d'aérogel), $\phi_{ensemble}$ double.

Démonstration mathématique :

$$\phi'_{ensemble} = \frac{|T_2 - T_1|}{\left(\frac{e_{aluminium}}{\lambda_{aluminium}} + \frac{e_{a\acute{e}rogel}}{\lambda_{a\acute{e}rogel}}\right)} \times (L \times \ell)'$$

$$Or (L \times \ell)' = 2 \times L \times \ell$$

$$\phi'_{ensemble} = \frac{|T_2 - T_1|}{\left(\frac{e_{aluminium}}{\lambda_{aluminium}} + \frac{e_{a\acute{e}rogel}}{\lambda_{a\acute{e}rogel}}\right)} \times 2 \times L \times \ell$$

$$\phi'_{ensemble} = 2 \times \frac{|T_2 - T_1|}{\left(\frac{e_{aluminium}}{\lambda_{aluminium}} + \frac{e_{a\acute{e}rogel}}{\lambda_{a\acute{e}rogel}}\right)} \times L \times \ell$$

$$\phi'_{ensemble} = 2 \times \phi_{ensemble}$$

 $\phi_{ensemble}$ est inversement proportionnel à l'épaisseur de l'ensemble ainsi, lorsqu'on double l'épaisseur de l'ensemble (pièce en aluminium et couche d'aérogel), $\phi_{ensemble}$ est divisé par 2. Démonstration mathématique :

$$\begin{split} \varphi'_{ensemble} &= \frac{|T_2 - T_1|}{\left(\frac{e'_{aluminium}}{\lambda_{aluminium}} + \frac{e'_{a\acute{e}rogel}}{\lambda_{a\acute{e}rogel}}\right)} \times L \times \ell \\ \\ Or \\ & \geqslant e'_{aluminium} = 2 \times e_{aluminium} \\ & \geqslant e'_{a\acute{e}rogel} = 2 \times e_{a\acute{e}rogel} \\ \varphi''_{ensemble} &= \frac{|T_2 - T_1|}{\left(\frac{2 \times e_{aluminium}}{\lambda_{aluminium}} + \frac{2 \times e_{a\acute{e}rogel}}{\lambda_{a\acute{e}rogel}}\right)} \times L \times \ell \\ \varphi''_{ensemble} &= \frac{1}{2} \times \frac{|T_2 - T_1|}{\left(\frac{e_{aluminium}}{\lambda_{aluminium}} + \frac{e_{a\acute{e}rogel}}{\lambda_{a\acute{e}rogel}}\right)} \times L \times \ell \\ \varphi''_{ensemble} &= \frac{1}{2} \times \frac{|T_2 - T_1|}{\left(\frac{e_{aluminium}}{\lambda_{aluminium}} + \frac{e_{a\acute{e}rogel}}{\lambda_{a\acute{e}rogel}}\right)} \times L \times \ell \\ \\ \varphi''_{ensemble} &= \frac{1}{2} \times \varphi_{ensemble} \end{split}$$