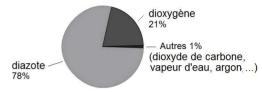
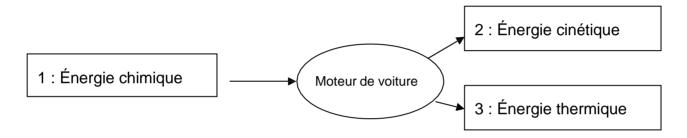
Diplôme national du brevet Métropole Septembre 2019

CORRECTION Yohan Atlan © www.vecteurbac.fr

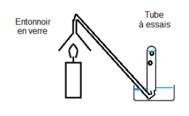

CLASSE: 3^{ème} **SERIE**: ⊠Générale

DURÉE DE L'EXERCICE : 30 min **CALCULATRICE AUTORISÉE :** ⊠ Oui « type collège »


Qualité de l'air (25 points)

Question 1

Les deux principaux composants de l'air (non pollué) sont : le diazote N2 et le dioxygène O2.

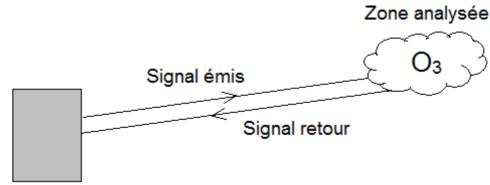

Question 2

Question 3

Pour mettre en évidence la production de dioxyde de carbone CO₂ obtenu lors d'une combustion, il faut :

- Allumons une bougie pour avoir une réaction de combustion
- Recueillir le gaz de combustion par déplacement d'eau

- Mettons de l'eau de chaux dans le tube à essais
- L'eau de chaux se trouble si le gaz contient du dioxyde de carbone CO₂.


Question 4

4a-

Composition atomique de la molécule de dioxygène O2 : 2 atomes d'oxygène. Composition atomique de la molécule d'ozone O3 : 3 atomes d'oxygène.

4b-

NO2 + O2	→ NO + O3
Réactifs	Produits
4 atomes d'oxygène et un	4 atomes d'oxygène et un
atome d'azote	atome d'azote

Émetteur / Récepteur du signal laser

$$v = \frac{d_{parcourue}}{\Delta t}$$

Or le signal parcourt un aller retour. Ainsi $d_{parcourue} = 2D$

$$v = \frac{2D}{\Delta t}$$

$$v = \frac{2D}{\Delta t}$$

$$\frac{2D}{\Delta t} = v$$

$$D = \frac{v \times \Delta t}{2}$$

$$D = \frac{300\ 000.\ 10^3 \times 3.\ 10^{-6}}{2}$$

$$D = 450\ m$$

La distance entre le LIDAR et la zone analysée est de 450 m.