Diplôme national du brevet Métropole 2017

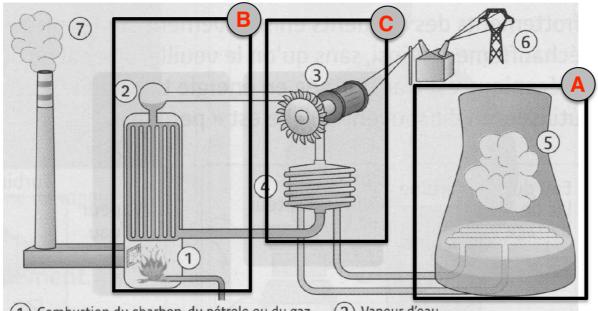
CORRECTION Yohan Atlan © www.vecteurbac.fr

CLASSE: 3^{ème} **SERIE:** ⊠ Générale

DURÉE DE L'EXERCICE : 30 min CALCULATRICE AUTORISÉE : ☑ Oui « type collège »

Production d'électricité (25 points)

Question 1


Nom de la centrale	Source(s) d'énergie utilisée	Source d'énergie renouvelable ou non ?	Dégage ou ne dégage pas de fumées lors de son utilisation ?
Thermique à flamme	charbon, pétrole et gaz	non renouvelable	Dégage des fumées lors de son utilisation
Géothermique	chaleur de la Terre	renouvelable	Ne dégage pas de fumées lors de son utilisation ?

Question 2

A : circuit de refroidissement

B : circuit primaire ou lieu de transformation d'énergie chimique en énergie thermique

C : circuit secondaire ou lieu de transformation de l'énergie mécanique en énergie électrique

- (1) Combustion du charbon, du pétrole ou du gaz
- (2) Vapeur d'eau

- (3) Turbine et alternateur
- (4) Condenseur (transforme la vapeur en eau liquide)
- (5) Dans ces tours, l'eau de refroidissement de la centrale est elle-même refroidie en circulant au contact de l'air, ce qui explique le dégagement de vapeur d'eau
- (6) Réseau électrique (7) Cheminée libérant gaz et fumées produits lors de la combustion

Question 3

3a-

Le gaz participant à l'effet de serre produit lors de cette transformation chimique est le dioxyde de carbone de formule CO₂.

3b-

3b.1

D'après l'équation $CH_4 + 2O_2 \rightarrow CO_2 + 2 H_2O$

Pour une molécule de méthane CH_4 , on utilise 2 molécules de dioxygène O_2 .

1 molécule de CH ₄	2 molécules de 0 ₂	
6×10 ²²	N	

$$N = \frac{6 \times 10^{22} \times 2}{1}$$

$$N = 12 \times 10^{22}$$

$$N = 1.2 \times 10^{23}$$

Lorsqu'on brûle 6×10^{22} molécules de méthane de manière complète, $1,2\times10^{23}$ molécules de dioxygène sont nécessaires.

3b.2

D'après l'équation $CH_4 + 2O_2 \rightarrow CO_2 + 2 H_2O$

Pour une molécule de méthane CH₄, 1 molécules dioxyde de carbone est formée.

1 molécule de CH ₄	1 molécule de CO ₂	
6×10 ²²	N	

$$N = \frac{6 \times 10^{22} \times 1}{1}$$

$$N = 6 \times 10^{22}$$

Lorsqu'on brûle 6×10^{22} molécules de méthane de manière complète, 6×10^{22} molécules de dioxyde de carbone sont formées.

Question 4

4a-

Calculons, la puissance électrique du réacteur de centrale géothermique :

$$E = P \times t$$

$$P \times t = E$$

$$P = \frac{E}{t}$$

$$P = \frac{75000000}{6820}$$

$$P = 1100 \text{ MW}$$

La puissance électrique du réacteur de centrale géothermique est équivalente à celle du réacteur de centrale thermique à flamme qui produit une puissance d'environ 1100 MW.

4b-

Certains pays ont opté pour des centrales géothermiques pour les raisons suivantes :

- L'énergie est renouvelable
- > Pas de production de gaz à effet de serre
- La puissance électrique produite est équivalente à celle du réacteur de centrale thermique à flamme