## Diplôme national du brevet session 2022 Série Professionnelle agricole – Métropole : <u>www.vecteurbac.fr</u>

L'usage de la calculatrice <u>avec le mode examen activé</u> ou <u>sans mémoire</u>, «type collège », est autorisé.

## PHYSIQUE-CHIMIE – Durée 30 minutes – 25 points

## Les voitures d'aujourd'hui et la sécurité routière

Une voiture classique fonctionne avec un moteur thermique alimenté avec de l'essence ou du gazole.



Source: <a href="https://www.paycar.fr/guide-auto/">https://www.paycar.fr/guide-auto/</a>

| 1. La source d'énergie de la voiture classique. (4 points)                                   |                               |
|----------------------------------------------------------------------------------------------|-------------------------------|
| 1.1. Citer la source d'énergie mise en jeu dans un moteur thermiq                            |                               |
| 1.2. Indiquer s'il s'agit d'une source d'énergie renouvelable ou pas                         | 3.                            |
| 2. La voiture classique. (11 points)                                                         |                               |
| La combustion de l'essence ou du gazole produit un composé nor                               | nmé dioxyde de carbone.       |
| 2.1. Parmi les quatre formules chimiques données ci-dessous, case, celle du dioxyde carbone. | indiquer en cochant la bonne  |
| $\square C_2O$ $\square CO_2$ $\square CO^2$ $\square CO_2$                                  |                               |
| 2.2. Donner le nombre et le nom des atomes présents dans la mo                               | lécule de dioxyde de carbone. |
| Le dioxyde de carbone peut également être obtenu par comb dioxygène $O_2$ .                  |                               |
|                                                                                              |                               |
| 2.3. Écrire ci-dessous l'équation traduisant cette combustion.                               |                               |
|                                                                                              |                               |

| Le dioxyde de carbone est un gaz à effet de serre. Les constructeurs automobiles développent actuellement de nouveaux types de véhicule pour réduire les émissions de gaz à effet de serre, dans le cadre de leur contribution à la protection de l'environnement. |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2.4. Citer une forme d'énergie mise en œuvre dans ces nouveaux types de véhicule.                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                    |  |
| 3. L'énergie mise en jeu lors d'un déplacement de la voiture. (10 points)                                                                                                                                                                                          |  |
| La voiture a une masse m = 1 000 kg. Elle roule en ville à la vitesse v = 50 km/h, ce qui correspond à $v$ = 14 m/s.                                                                                                                                               |  |
| 3.1. Montrer que son énergie cinétique $E_{\text{c}}$ a une valeur voisine de 100 000 J.                                                                                                                                                                           |  |
|                                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                    |  |
| Donnée : expression de l'énergie cinétique $E_c = \frac{1}{2} m. v^2$                                                                                                                                                                                              |  |
| Un message de la sécurité routière affirme que cette énergie est celle qu'aurait cette voiture en arrivant sur le sol si elle tombait du $4^{\text{ème}}$ étage d'un immeuble, soit d'une hauteur h = 10 m.                                                        |  |
| 3.2. Donner le nom de l'énergie qu'aurait cette voiture si on la hissait à la hauteur h.                                                                                                                                                                           |  |
| Cette énergie se calcule à l'aide de la formule : $E_p=m.\mathrm{g.h}$ avec m masse en kg, et g = 9,8 N/kg.                                                                                                                                                        |  |
| On considère que lors de la chute il y a conservation de l'énergie de la voiture.                                                                                                                                                                                  |  |
| 3.3. Indiquer, en le justifiant, si le message de la sécurité routière est correct ou pas.                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                    |  |