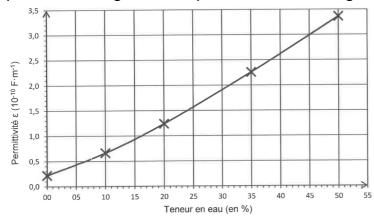
Métropole 2023 Sujet 2

CORRECTION Yohan Atlan © https://www.vecteurbac.fr/

CLASSE: Terminale EXERCICE B: 6 points

VOIE : ⊠ Générale **ENSEIGNEMENT** : **physique-chimie**

DURÉE DE L'ÉPREUVE : 1h03 CALCULATRICE AUTORISÉE : ⊠Oui sans mémoire, « type collège »


EXERCICE 3

Modélisation d'un détecteur capacitif d'humidité

Q1.

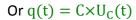
$$C = \frac{\varepsilon \times S}{d}$$

La permittivité ε augmente lorsque la teneur en eau augmente (figure 2).

Or C et ϵ sont proportionnels. Ainsi, lorsque la teneur en eau augmente, la capacité C du détecteur augmente.

Q2.

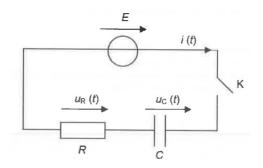
D'après la loi d'additivité des tensions ou loi des mailles :


$$U_{C}(t) + U_{R}(t) = E$$

or
$$U_R(t) = R \times i$$

$$U_{C}(t) + R \times i = E$$

Or
$$i(t) = \frac{dq_{(t)}}{dt}$$


$$U_{C}(t) + R \times \frac{dq_{(t)}}{dt} = E$$

$$U_C(t) + R \times \frac{dC \times U_C(t)}{dt} = E$$

$$U_{C}(t) + RC \frac{dU_{C}(t)}{dt} = E$$

$$RC \frac{dU_C(t)}{dt} + U_C(t) = E$$

La tension aux bornes du condensateur obéit à l'équation différentielle ci-dessous

$$\tau \times \frac{dU_{C}(t)}{dt} + U_{C}(t) = E$$

Par identification:

$$\tau = RC$$

Q3.

Vérifions que la fonction $U_C(t) = E\left(1 - e^{-\frac{t}{\tau}}\right)$ est solution de cette équation différentielle :

$$U_{C}(t) = E\left(1 - e^{-\frac{t}{\tau}}\right)$$

-Dérivons $U_{C}(t)$:

$$\frac{dU_{C}(t)}{dt} = \frac{E}{\tau}e^{-\frac{t}{\tau}}$$

-Remplaçons $U_C(t)$ et $\frac{dU_C(t)}{dt}$ dans l'équation :

$$\tau \times \frac{dU_C(t)}{dt} + U_C(t) = \tau \times \frac{E}{\tau} e^{-\frac{t}{\tau}} + E\left(1 - e^{-\frac{t}{\tau}}\right) =$$

$$\tau \times \frac{dU_C(t)}{dt} + U_C(t) = \tau \times \frac{E}{\tau} e^{-\frac{t}{\tau}} + E - Ee^{-\frac{t}{\tau}}$$

$$\tau \times \frac{dU_C(t)}{dt} + U_C(t) = \frac{\pm e^{-\frac{t}{\tau}}}{\tau} + E - \frac{\pm e^{-\frac{t}{\tau}}}{\tau}$$

On obtient bien:

$$\tau \times \frac{dU_C(t)}{dt} + U_C(t) = E$$

La fonction $U_C(t) = E\left(1 - e^{-\frac{t}{\tau}}\right)$ est donc solution de cette équation différentielle.

Vérifions que $U_C(t) = E\left(1 - e^{-\frac{t}{\tau}}\right)$ satisfait à la condition imposée à la date t=0 s :

$$U_{C}(t) = E\left(1 - e^{-\frac{t}{\tau}}\right)$$

$$U_{C}(t=0) = E\left(1 - e^{-\frac{0}{\tau}}\right)$$

$$U_{\rm C}(t=0) = E(1-1)$$

$$U_{C}(t = 0) = E \times 0$$

$$U_{\rm C}(t=0)=0\,V$$

D'après l'énoncé : « A la date t=0 s, le condensateur est déchargé » soit $U_{\mathbb{C}}(t=0)=0\ V$.

 $U_C(t) = E\left(1 - e^{-\frac{t}{\tau}}\right)$ satisfait donc à la condition imposée à la date t=0 s.

Q4.

$$\begin{split} &U_C(t) = E\left(1-e^{-\frac{t}{\tau}}\right)\\ &U_C(t=\tau) = E\left(1-e^{-\frac{\tau}{\tau}}\right)\\ &U_C(t=\tau) = E(1-e^{-1})\\ &U_C(t=\tau) = E\times0,63\\ &U_C(t=\tau) = 0,63\times E \end{split}$$

Q5.

D'après l'énoncé : « pour que la mesure soit suffisamment précise, on doit disposer d'au moins 10 valeurs de la tension aux bornes du condensateur avant d'atteindre le temps caractéristique du circuit RC ».

52 000 valeurs	1 s
10 valeurs	τ

$$\tau = \frac{10 \times 1}{52\ 000}$$

$$\tau = 1,92 \times 10^{-4} s$$

$$\tau = 192 \times 10^{-6} s$$

$$\tau = 192 \ \mu s$$

Le temps caractéristique τ du circuit RC doit être au minimum de l'ordre de 200 μ s

Q6.

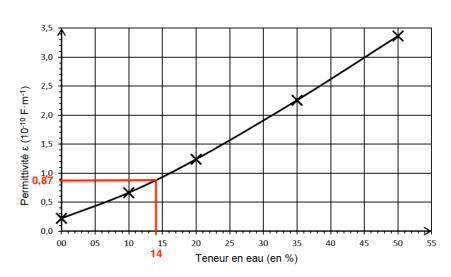
Pour déterminer la teneur minimale en eau il faut connaître la valeur de la permittivité.

$$\tau = RC$$

Or

$$C = \frac{\varepsilon \times S}{d}$$

$$\tau = R \times \frac{\varepsilon \times S}{d}$$


$$R \times \frac{\varepsilon \times S}{d} = \tau$$

$$\varepsilon = \frac{\tau \times d}{R \times S}$$

$$\varepsilon = \frac{1,92 \times 10^{-4} \times 1,0 \times 10^{-2}}{2,2 \times 10^{5} \times 1,0 \times 10^{-1}}$$

$$\varepsilon = 8,7 \times 10^{-11} \text{ F. m}^{-1}$$

$$\varepsilon = 0,87 \times 10^{-11} \text{ F. m}^{-1}$$

D'après www.hal.laas.fr

Figure 2. Permittivité du sol en fonction de la teneur en eau du sol

Graphiquement la teneur en eau est de 14 %.

Ainsi, la teneur minimale en eau qu'il est possible de mesurer avec ce dispositif est de 14%.

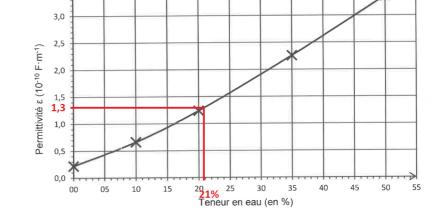
Q7.

L'objectif final de cet extrait de programme est d'afficher la valeur de τ .

Q8.

Ligne 5: while tension < 0.63*E

Q9.


Avec la formule de la question 6, Calculons la permittivité pour $\tau=0.28676887987~ms$:

3,5

$$\begin{split} \epsilon &= \frac{\tau \times d}{R \times S} \\ \epsilon &= \frac{0,28676887987 \times 10^{-3} \times 1,0 \times 10^{-2}}{2,2 \times 10^{5} \times 1,0 \times 10^{-1}} \\ \epsilon &= 1,3 \times 10^{-10} \text{ F. m}^{-1} \end{split}$$

Graphiquement la teneur en eau est de 21%.

D'après l'énoncé « dans ce type de sol, la teneur en eau doit être comprise entre 24% et 38% pour qu'une plante puisse y avoir une croissance normale ».

La teneur en eau mesurée dans ce sol argileux n'est donc pas

suffisante pour y assurer une croissance normale d'une plante.