ÉVALUATION COMMUNE 2020 CORRECTION Yohan Atlan © www.vecteurbac.fr CLASSE: Première E3C: □ E3C1 □ E3C2 □ E3C3 VOIE: □ Générale ENSEIGNEMENT: physique-chimie DURÉE DE L'ÉPREUVE: 1 h CALCULATRICE AUTORISÉE: □ Oui □ Non

Dihydrogène et ballons dirigeables (10 points)

1. Étude d'une transformation chimique permettant de produire du dihydrogène

1.1

L'acide chlorhydrique est corrosif.

Il faut mettre une blouse, des gants et des lunettes de protection pour le manipuler.

1.2

Le test d'identification du dihydrogène est le test de la flamme. En présence d'une flamme, il y a une détonation.

1.3

Réactifs : $Mg_{(s)}$ et $H^{+}_{(aq)}$ Produits : $Mg^{2+}_{(aq)}$ et $H_{2(g)}$

Ecrivons les demi équations électronique

$$Mg_{(s)} = Mg^{2+}_{(aq)} + 2e^{-}$$

$$2 H^{+}_{(aq)} + 2e^{-} = H_{2(g)}$$

 $Mg_{(s)}$ donne des électrons c'est un réducteur $H^{+}_{(aq)}$ gagne des électrons , c'est un oxydant.

1.4

$$n_{Mg} = \frac{m_{Mg}}{M_{Mg}} = \frac{40.10^{-3}}{24.3} = 1.6.10^{-3} \text{ mol}$$

$$n_{H^+} = C_a \times V_a = 5,0.10^{-1} \times 100.10^{-3} = 5,0.10^{-2} mol$$

1.5

Équation de la réaction		$Mg_{(s)}$ + 2 $H^{+}_{(aq)}$ \rightarrow $Mg^{2+}_{(aq)}$ + $H_{2(g)}$			
État du système	Avancement (mol)	n(Mg)	n(H ⁺)	n(Mg ²⁺)	n(H ₂)
État initial	0	$1,6.10^{-3}$	$5,0.10^{-2}$	0	0
État en cours de transformation	X	$1,6.10^{-3} - x$	$5,0.10^{-2} - 2x$	X	X
État final	x _{max}	$1,6.10^{-3} - x_{\text{max}}$	$5,0.10^{-2} - 2x_{\text{max}}$	x _{max}	x _{max}

Calculons x_{max}:

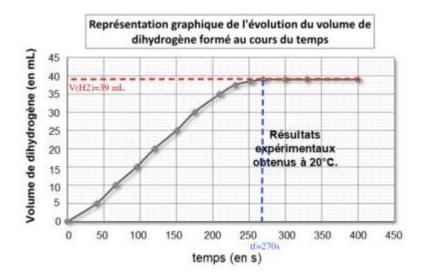
$$1,6.10^{-3} - x_{\text{max}1} = 0$$

 $x_{\text{max}1} = 1,6.10^{-3} \text{mol}$

$$5.0.10^{-2} - 2x_{max2} = 0$$
 $x_{max2} = \frac{5.0.10^{-2}}{2} = 2.5.10^{-2} \text{mol}$

$$x_{max1} < x_{max2}$$

 $x_{max} = x_{max1} = 1,6.10^{-3}$ mol


Mg est le réactif limitant.

1.6

D'après le tableau d'avancement :

$$n_{H_2} = x_{max} = 1.6.10^{-3} \text{mol}$$

1.7

$$t_f=270s \\ V_{H_2}=39mL$$

1.8

$$x_f = n_{H_2} = \frac{V}{V_m} = \frac{39.10^{-3}}{24.0} = 1.6.10^{-3} \text{mol}$$

 $x_f = x_{max}$

La transformation étudiée est une transformation totale

2. Un accident de dirigeable gonflé au dihydrogène qui a marqué l'histoire

2.1.

₁**H**: 1s¹ donc 1 électron de valence : H fait une liaison

₈O: 1s² 2s² 2p⁴ donc 6 électrons de valence : O fait 2 liaisons et deux doublets non liants

H ₂	O ₂	H₂O
H—H	$\langle 0 = 0 \rangle$	H

2.2.

$$H_{2 (g)} + \frac{1}{2} O_{2 (g)} \rightarrow H_2 O_{(I)}$$

Liaisons rompues : une liaison H-H et la double liaison O=O.

Liaisons formées: 2 liaisons O-H.

2.3.

Calculons l'énergie libérée lors de la réaction :

$$n_{\rm H_2} = \frac{\rm V}{\rm V_m}$$
 et E_r=D_{H-H}+ 1/2×D_{O-O}- 2×D_{O-H}

$$E = \frac{V}{V_m} \times (D_{H-H} + 1/2 \times D_{O-O} - 2 \times D_{O-H})$$

$$E = \frac{200\ 000 \cdot 10^3}{24,0} \times \ (\ 436 \cdot 10^3 + \ 1/2 \times 496 \cdot 10^3 - \ 2 \times 463 \cdot 10^3)$$

$$E = -2.02 \cdot 10^{12} I$$

Le signe - désigne une énergie libérée.

Comparons avec la TNT:

D'après les données : un gramme de TNT libérant une énergie de

1g de TNT	4184 J	
х	2,02 . 10 ¹² J	

$$x = \frac{2,02.10^{12} \times 1}{4184} = 4,8.10^{8} g = 4,8.10^{2} tonnes$$

 $4.8.\,10^2$ tonnes de TNT produiraient une énergie équivalente lors de son explosion à celle produite par l'explosion du dihydrogène contenu dans l'Hindenburg.