EXERCICE B - Installation d'une fenêtre de toit (10 points)

Afin d'accroître la luminosité d'une pièce située sous le toit de sa maison, une famille envisage d'installer une fenêtre de toiture d'entrée de gamme constituée d'un simple vitrage de surface $S = 1,0 \text{ m}^2$.

L'objectif de cet exercice est d'étudier une des conséquences de cet achat en termes de température lors de la période estivale.

Pour simplifier, on suppose qu'en période estivale, à partir de midi, la température de l'air au voisinage de cette fenêtre est constante et égale $\theta_e = 50$ °C.

On admettra que la partie toiture en tuiles est parfaitement isolée thermiquement et que tout transfert thermique par rayonnement à travers la fenêtre de toit est négligeable.

On considèrera que le seul transfert thermique échangé par l'air de la pièce est dû au transfert conducto-convectif provenant de la vitre.

Données

- \triangleright Coefficient de transfert conducto-convectif : $h = 8.0 \text{ W} \cdot \text{K}^{-1} \cdot \text{m}^{-2}$;
- > Surface de la vitre : $S = 1.0 \text{ m}^2$;
- Masse d'air contenue dans la pièce : $m_{\text{air}} = 1.3 \times 10^2 \text{ kg}$;
- ➤ Capacité thermique massique de l'air sec : $c_{air} = 1.0 \times 10^3 \text{ J} \cdot \text{K}^{-1} \cdot \text{kg}^{-1}$.
- \triangleright Le flux thermique $\Phi(t)$ entre un système à la température uniforme $\theta(t)$ et un milieu extérieur à la température θ_e fixe (thermostat) peut être modélisé par la loi de Newton :

$$\Phi(t) = h \times S \times (\theta_e - \theta(t))$$

avec Φ en W; h coefficient conducto-convectif en W·m⁻²·K⁻¹ et S surface d'échange entre le système et le milieu extérieur, en m².

1. Exprimer le transfert thermique Q qui a lieu à travers la vitre pendant la durée très courte Δt en fonction de Δt , h, S, θ_e et θ .

Le système étudié est l'air de la pièce que l'on considérera incompressible.

- **2.** Appliquer le premier principe de la thermodynamique au système et en déduire une relation entre Φ et les grandeurs Δt , $m_{\rm air}$, $c_{\rm air}$ et $\Delta \theta$ où $\Delta \theta$ désigne la variation de température du système pendant la durée Δt .
- **3.** Montrer que la température de l'air de la pièce $\theta(t)$ obéit à l'équation différentielle :

$$\frac{d\theta}{dt}$$
 + $a \times \theta(t) = a \times \theta_e$ avec $a = \frac{h \times S}{m_{air} \times c_{air}}$

4. En utilisant les données, montrer que $a = 6.2 \times 10^{-5}$ s⁻¹ environ. Justifier son unité.

On admet que la solution à l'équation différentielle a pour expression :

$$\theta(t) = \theta_i + (\theta_e - \theta_i) \times (1 - e^{-a \times t})$$

où θ_i est la température de l'air de la pièce à l'instant initial.

23-SCIPCJ2LR1 20/21

5. Calculer la température θ de la pièce au bout d'une heure puis au bout de trois heures lorsque la température initiale intérieure θ_i vaut 20 °C. À partir de ces résultats numériques, justifier si la fenêtre de toit choisie convient lors de la période estivale.

23-SCIPCJ2LR1 21/21