Sujet zéro n°2

CORRECTION Yohan Atlan © https://www.vecteurbac.fr/

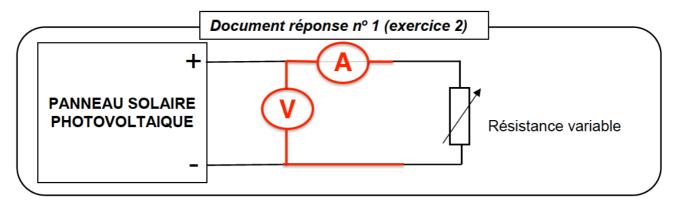
CLASSE : Terminale STI2D EXERCICE 2 : 6 points

VOIE :

☐ Générale

ENSEIGNEMENT : Physique-chimie

DURÉE DE L'ÉPREUVE : 0h54 CALCULATRICE AUTORISÉE : ⊠Oui sans mémoire, « type collège »


EXERCICE 2

Aide au stationnement

2.1. Étude d'un panneau solaire

2.1.1.

Pour tracer la caractéristique, il faut relever la valeur de la tension avec un voltmètre branché en dérivation et la valeur de l'intensité avec un ampèremètre branché en série.

2.1.2.

La puissance est définie par $P = U \times I$.

Pour avoir la puissance maximale, il faut trouver point de fonctionnement pour lequel la tension est la plus grande avant que l'intensité ne baisse brutalement.

$$U = 18 V$$

$$I = 4.6 A$$

$$P_{max} = 18 \times 4.6$$

$$P_{\text{max}} = 83 \text{ W}$$

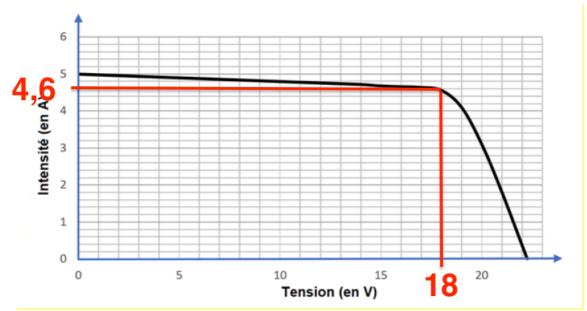


Figure 4 : Courbe de l'intensité en fonction de la tension pour un éclairement de 1000 W/m².

2.1.3.

$$Rendement = \frac{P_{electrique}}{P_{recue}}$$

Or l'éclairement est de 1000 W /m² et les dimensions ont pour valeur (L x l x h) : 880x673x35 mm

$$S = L \times l$$

$$S = 800 \times 10^{-3} \times 673 \times 10^{-3}$$

$$S = 0.538 \text{ m}^2$$

$$P_{\text{recue}} = 1000 \times 0,538$$

$$P_{\text{recue}} = 538 \text{ W}$$

$$Rendement = \frac{P_{electrique}}{P_{recue}}$$

$$Rendement = \frac{83}{538}$$

Rendement =
$$\frac{63}{538}$$

Rendement =
$$0.15 = 15 \%$$

2.2. Surveillance d'une pompe

2.2.1.

D'après l'énoncé : « la fréquence du fondamental correspond au nombre de tours effectués en une seconde »

$$1\,500\frac{\text{tr}}{\text{min}} = 1500\,\frac{\text{tours}}{\text{min}} = 1500\,\frac{\text{tours}}{60\,\text{secondes}} = \frac{1500}{60} \times \frac{\text{tours}}{\text{secondes}} = 25\,\frac{\text{tours}}{\text{secondes}} = 25\,\text{tr/sec}$$

Ainsi,
$$f_1 = 25$$
 Hz.

2.2.2.

$$f_n = n \times f_1$$

$$f_2 = 2 \times f_1$$

$$f_2 = 2 \times 25$$

$$f_2 = 50 \text{ Hz}$$

$$f_3 = 3 \times f_1$$

$$f_3 = 3 \times 25$$

$$f_3 = 75 \text{ Hz}$$

$$f_4 = 4 \times f_1$$

$$f_4 = 4 \times 25$$

$$f_4 = 100 \text{ Hz}$$

2.2.3.

Nous remarquons la présence d'un pic d'amplitude non négligeable sur le spectre pour une fréquence égale à 2 fois la fréquence de rotation du moteur. Ainsi, un problème d'alignement de la machine est diagnostiqué.

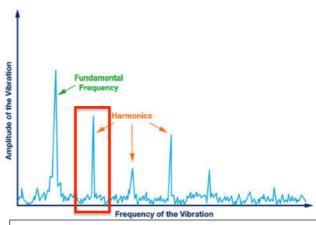


Figure 5 : Spectre d'amplitude des vibrations à 1500 tr/min