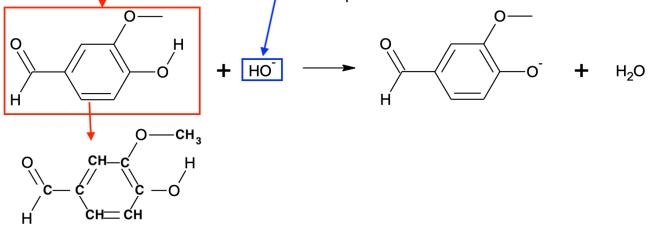
Liban 2022 sujet 2

CORRECTION Yohan Atlan © https://www.vecteurbac.fr/

CLASSE: Terminale **EXERCICE A**: au choix du candidat (5 points)

VOIE : ⊠ Générale ENSEIGNEMENT : physique-chimie

DURÉE DE L'ÉPREUVE : 0h53 CALCULATRICE AUTORISÉE : ⊠Oui sans mémoire, « type collège »


EXERCICE A au choix du candidat Arôme de vanille

1. Préparation d'une solution de référence

1.1.

Dans cette solution S₁, la

vanilline, notée VH, a réagi avec les ions hydroxyde pour former l'ion vanillinate, noté V⁻. L'équation de la réaction modélisant cette transformation chimique est la suivante :

Formule brute de la vanilline : C₈H₈O₃

1.2.

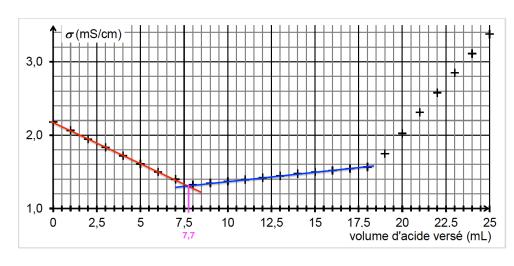
Les deux couples acide/base mis en jeu lors de cette réaction

 VH/V^- ou $C_8H_8O_3/C_8H_7O_3^-$

➤ H₂0/H0⁻

2. Titrage de la solution de référence S1

2.1.


« Première phase : titrage de l'excès des ions hydroxyde »

$${\rm HO}_{(aq)}^- + {\rm H_3O}_{(aq)}^+ \to 2{\rm H_2O}_{(l)}$$

2.2.

Graphiquement le volume d'acide nécessaire au titrage des ions hydroxyde est au premier changement de pente du graphique.

$$V_{eq1} = 7.7 \text{ mL}$$

2.3.

« Première phase : titrage de l'excès des ions hydroxyde par de l'acide chlorhydrique $(H_3O_{(aq)}^+; Cl_{(aq)}^-)$ » $HO_{(aq)}^- + H_3O_{(aq)}^+ \to 2H_2O_{(l)}$

- ➢ les ions HO⁻ sont consommés, la concentration des ions HO⁻ est diminue.
- ightharpoonup les ions H_3O^+ sont ajoutés et consommés immédiatement, ils constituent le réactif limitant, la concentration des ions H_3O^+ est nulle.
- ➢ les ions Cl⁻ sont ajoutés, ils ne réagissent pas, la concentration des ions Cl⁻augmente.
- ➢ les ions Na⁺ présent dans l'hydroxyde de sodium, ne réagissent pas, la concentration des ions Na⁺ne change pas.
- ➢ les ions V[−] présent dans la solution, ne réagissent pas, la concentration des ions V[−] ne change pas.

lons	Première phase
НО-	Л
H ₃ O ⁺	0
Cl-	7
Na ⁺	=
V-	=

Donc les ions HO⁻ sont remplacés par des ions Cl⁻

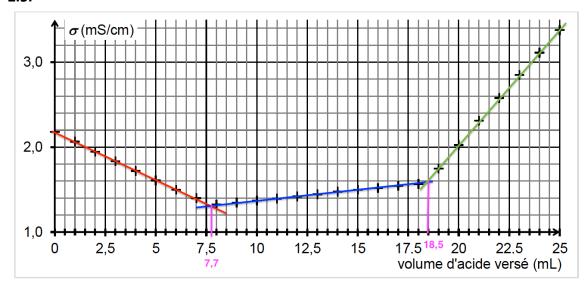
Or $\lambda_{\rm HO^-} > \lambda_{\rm Cl^-}$ ainsi σ diminue donc lors de la première phase.

2.4.

« Deuxième phase : titrage de la base conjuguée de la vanilline par de l'acide chlorhydrique $(H_3O^+_{(aq)};Cl^-_{(aq)})$ » $V^-_{(aq)}+H_3O^+_{(aq)}\to VH_{(aq)}+H_2O_{(l)}$

- ➤ les ions HO⁻ n'existent plus, la concentration des ions HO⁻ est nulle.
- les ions $\rm H_3O^+$ sont ajoutés et consommés immédiatement, ils constituent le réactif limitant, la concentration des ions $\rm H_3O^+$ est nulle.
- ➢ les ions Cl⁻ sont ajoutés, ils ne réagissent pas, la concentration des ions Cl⁻augmente.
- les ions Na⁺ présent, ne réagissent pas, la concentration des ions Na⁺ne change pas.
- ➢ les ions V[−] présent dans la solution, réagissent, la concentration des ions V[−] diminue.

Deuxième phase
0
0
7
=
Л


Donc les ions V⁻ sont remplacés par des ions Cl⁻

Or σ augmente donc lors de cette deuxième phase.

Donc
$$\lambda_{V^-} < \lambda_{Cl^-}$$

La conductivité ionique molaire de l'ion vanillinate (V⁻) est inférieure à celle des ions chlorure.

2.5.

$$V_{\text{eqvanillate}} = V_{\text{eq2}} - V_{\text{eq1}}$$

$$V_{\text{eqvanillate}} = 18,5 - 7,7$$

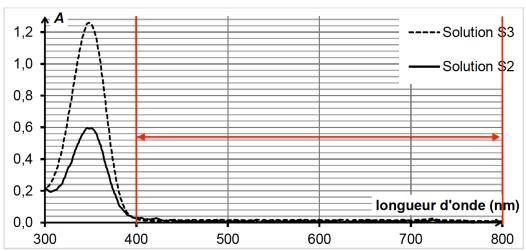
$$V_{eqvanillate} = 10.8 \text{ mL}$$

2.6.

A l'équivalence :

$$\frac{n_{V^-}^i}{1} = \frac{n_{H_3O^+}^{eq}}{1}$$

$$C_{V^-} \times V_1 = C_a \times V_{eqvanillate}$$

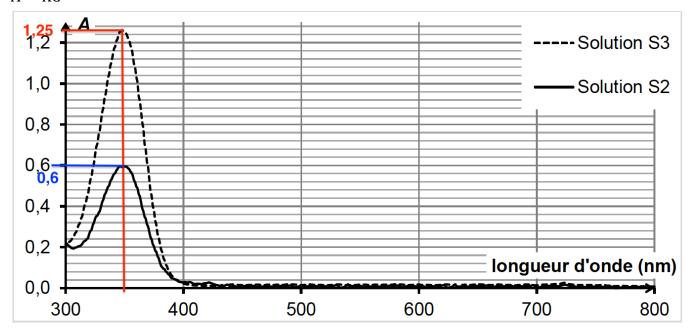

$$C_{V^-} = \frac{C_a \times V_{\rm eqvanillate}}{V_1}$$

$$C_{V^-} = \frac{1,0.\,10^{-1}\times 10,8.\,10^{-3}}{20,0.\,10^{-3}}$$

$$C_{V^-} = 5.4.10^{-2} \text{ mol. L}^{-1}$$

3. Dosage de la vanilline dans l'arôme alimentaire de vanille Bourbon

3.1.



Les solutions S₂ et S₃ n'absorbent pas dans le visible : elles sont incolores.

3.2.

Supposons que la loi de Beer-Lambert vérifiée par les solutions dans les conditions de l'expérience :

$$A = KC$$

La concentration en vanilline dans la solution S_3 est $C_{val} = 5.3 \times 10^{-5} \text{ mol} \cdot L^{-1}$ et $A_3 = 1.25$.

$$A = KC$$

$$K = \frac{A}{C}$$

$$K = \frac{1,25}{5 \cdot 3 \cdot 10^{-5}}$$

$$K = 2,4.10^4$$

D'ou
$$A = 2,4.10^4 \text{ C}$$

Déterminons C₂

$$A_2 = 2,4.10^4 C_2$$

$$C_2 = \frac{A_2}{2, 4. \, 10^4}$$

$$C_2 = \frac{0,60}{2,4.10^4}$$

$$C_2 = 2,5. \, 10^{-5} \text{mol. L}^{-1}$$

Estimons la masse de vanilline présente dans 1 litre d'arôme alimentaire :

$$n = \frac{m}{M}$$

$$m = n \times M$$

Or

$$C = \frac{n}{V}$$

$$n = C \times V$$

D'ou

$$m = C \times V \times M$$

$$m = 2.5 \cdot 10^{-5} \times 250 \cdot 10^{-3} \times 152$$

$$m = 9.5.10^{-4}g$$

 $m=9,\!5.\,10^{-4}\mathrm{g}$ dans 1,0 mL d'arôme alimentaire de vanille Bourbon

$9,5.10^{-4}$ g	1,0 mL
X	1,0 L

$$x = \frac{1.0 \times 9.5. \, 10^{-4}}{1.0. \, 10^{-3}}$$
$$x = 0.95 \, g$$

La masse de vanilline présente dans 1 litre d'arôme alimentaire est 0,95g