Nouvelle Calédonie septembre 2013

CORRECTION Yohan Atlan © https://www.vecteurbac.fr/

CLASSE: Terminale **EXERCICE 3**: 5 points

VOIE : ⊠ Générale ENSEIGNEMENT DE SPÉCIALITÉ : PHYSIQUE-CHIMIE

DURÉE DE L'EXERCICE : 0h53 CALCULATRICE AUTORISÉE : ⊠ Oui

Sujet original, non modifié. Ancien programme.

L'intégralité de cette annale est conforme au nouveau programme.

EXERCICE 3 Stratégie de synthèse

1. Mise en évidence de la difficulté de la synthèse peptidique

1.1.

On reconnaît que les molécules du document 1 sont bien des acides aminés car ces molécules possèdent un groupe carboxyle et un groupe amine.

Document 1 – Exemples d'acides α-aminés présents dans l'organisme.

1.2.

Les 4 acides α-aminés différents nécessaires à la synthèse de la Met-enképhaline sont :

- La glycine
- La tyrosine
- La méthionine
- La phénylalanine

Remarque : d'après le sujet : « la Met-enképhaline est aussi appelée Tyr-Gly-Gly-Phe-Met ». Le nom Tyr-Gly-Gly-Phe-Met nous donne les acides α -aminés nécessaires à la synthèse de la Met-enképhaline.

$$(R - NH_2 + R_1 - NH_2 + H_2 - NH - R_1 + H_2 - H_2$$

Pour trouver le produit manquant on procède par identification.

Le nouveau groupe fonctionnel est le groupe amide.

1.4.

Sans précaution particulière, à partir de deux acides α -aminés différents, A_1 acide α -aminé 1 et A_2 acide α -aminé 2, on pourrait obtenir quatre dipeptides différents :

- A_1 - A_2 : Le groupe acide de l'acide α -aminé 1 réagit avec le groupe amine de l'acide α -aminé 2.
- A_2 - A_1 : Le groupe acide de l'acide α -aminé 2 réagit avec le groupe amine de l'acide α -aminé 1.
- A_1 - A_1 : Le groupe acide de l'acide α -aminé 1 réagit avec le groupe amine de l'acide α -aminé 1.
- A_2 A_2 : Le groupe acide de l'acide α -aminé 2 réagit avec le groupe amine de l'acide α -aminé 2.

2. Dernière étape de synthèse de la Met-enképhaline

2.1.

2.2.

On retrouve dans la Met-enképhaline, le groupe carboxyle issue du réactif A (il est relié à R) et le groupe amine issue du réactif B (il est relié à R₁).

Il faut donc protéger :

- le groupe carboxyle issue du réactif A
- le groupe amine issue du réactif B

$$R_1$$
 NH_2 R OH OH OH

2.3.

Protection du réactif B : On protège le groupe amine issue du réactif B (voir question 2.2). On utilise le document 2 pour compléter l'étape 1.

Document 2 – Exemple de séquence de protection/déprotection d'une fonction amine

Protection d'une fonction amine par le tert-butylcarbamate :

1- Protection du réactif B :

Protection du réactif A : On protège le groupe acide issue du réactif A (voir question 2.2). On utilise le document 3 pour compléter l'étape 1.

Document 3 – Exemple de séquence de protection/déprotection d'une fonction acide carboxylique

Protection d'une fonction acide carboxylique par estérification :

$$R \stackrel{O}{\longrightarrow} + \boxed{OH} \longrightarrow R \stackrel{O}{\longrightarrow} + H_2O$$

2- Protection du réactif A :

$$H_2N$$
 \xrightarrow{R} \xrightarrow{OH} $+$ \xrightarrow{OH} \longrightarrow H_2N \xrightarrow{H} \xrightarrow{H}

Réaction entre le réactif A protégé et le réactif B protégé : On fait réagir l'amine du réactif A protégé avec l'acide du réactif B protégé.

3- Réaction entre le réactif A protégé et le réactif B protégé :

Déprotection de la fonction amine : On utilise le document 2 pour compléter l'étape 4.

La déprotection qui permet de retrouver la fonction amine est assurée par la décomposition du produit obtenu en milieu acide à 25°C.

4- Déprotection de la fonction amine :

Déprotection de la fonction acide carboxylique : On utilise le document 3 pour compléter l'étape 5.