Nouvelle Calédonie 2023 Sujet 2

CORRECTION Yohan Atlan © https://www.vecteurbac.fr/

CLASSE: Terminale EXERCICE 2: au choix du candidat (5 points)

VOIE : ⊠ Générale ENSEIGNEMENT : physique-chimie

DURÉE DE L'ÉPREUVE : 0h53 CALCULATRICE AUTORISÉE : ⊠Oui sans mémoire, « type collège »

EXERCICE 2 Fête de la musique

Partie A : Étude de quelques niveaux d'intensité sonores

A.1.1.

$$L = 10 \log \left(\frac{I}{I_0}\right)$$

$$10\log\left(\frac{I}{I_0}\right) = L$$

$$\log\left(\frac{I}{I_0}\right) = \frac{L}{10}$$

$$\frac{I}{I_0} = 10^{\frac{L}{10}}$$

$$I = I_0 \times 10^{\frac{L}{10}}$$

$$I_1 = I_0 \times 10^{\frac{L_1}{10}}$$

A.1.2.

$$I_1 = I_0 \times 10^{\frac{L_1}{10}}$$

$$I_1 = 1,00 \times 10^{-12} \times 10^{\frac{100}{10}}$$

$$I_1 = 1.00 \times 10^{-2} \text{ W. m}^{-2}$$

A.2.

Les intensités sonores s'additionnent :

$$I_{tot} = I_1 + I_2$$

$$I_{\rm tot} = 1.00 \times 10^{-2} + 1.00 \times 10^{-3}$$

$$I_{tot} = 1.10 \times 10^{-2} \text{W}.\,\text{m}^{-2}$$

A.3.

Calculons le niveau sonore total :

$$L = 10 \log \left(\frac{I}{I_0}\right)$$

$$L_{tot} = 10 \log \left(\frac{I_{tot}}{I_0} \right)$$

$$L_{\text{tot}} = 10 \log \left(\frac{1,10 \times 10^{-2}}{1,00 \times 10^{-12}} \right)$$

$$L_{tot} = 100 \text{ dB}$$

A.4.

Le niveau sonore de 100dB est inférieur au niveau sonore maximal autorisé fixé à 102 dB.

Ainsi, le DJ n'a pas besoin de faire de nouveaux réglages de sa sono pour cette fête de la musique si particulière.

A.5.

Lorsque la distance à la source augmente, le niveau sonore diminue du fait de l'atténuation géométrique.

A.6.

Lorsque qu'un obstacle est entre la source et l'auditeur, le niveau sonore diminue du fait de l'atténuation par absorption.

Partie B : Étude d'un solo de trompette

B.1.

Déterminons la période à l'aide de la figure 1 :

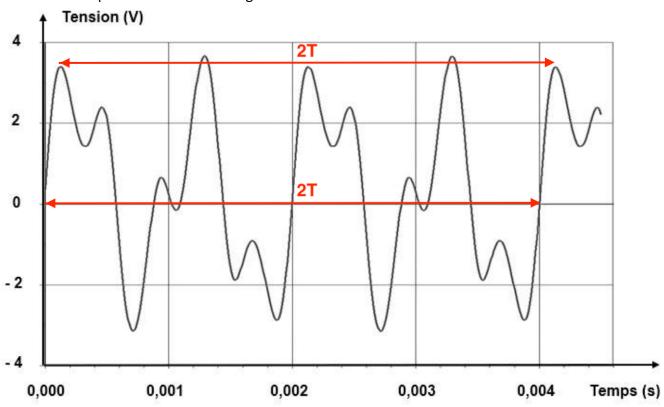


Figure 1 : Enregistrement de la note jouée par le trompettiste.

$$2T = 0.0040 \text{ s}$$

$$T = \frac{0.0040}{2}$$

$$T = 0.0020 \text{ s}$$

La fréquence est définie par :

$$f = \frac{1}{T}$$

$$f = \frac{1}{0,0020}$$

$$f = 500 \text{ Hz}$$

La fréquence f de la note émise par le trompettiste à pour valeur 500Hz.

La fréquence f de la note émise par le trompettiste à pour valeur 500 Hz.

D'après les données : Le niveau d'intensité sonore de la sono est réglé à L_1 = 100 dB à une distance de 2 m de celle-ci lors des concerts traditionnels, c'est-à-dire sans tracteur.

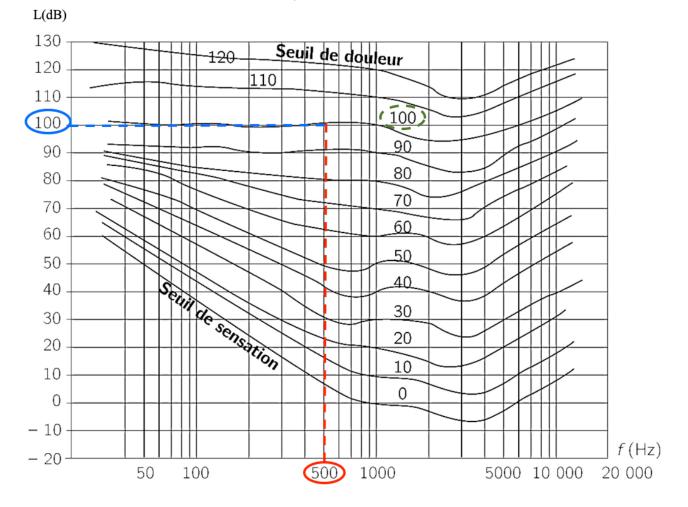


Figure 2 : Diagramme de FLETCHER et MUNSON

Pour f = 500 Hz et L_1 = 100 dB : la sensation est légèrement inférieure à 100 dB et en deca du seuil de douleur.

Ainsi, le seuil de douleur n'est pas atteint pour un spectateur placé à 2 m du char, lorsque la note de fréquence f émise par le trompettiste est diffusée.