Centres étrangers 2024 Sujet 1

CORRECTION Yohan Atlan © https://www.vecteurbac.fr/

CLASSE : Terminale **EXERCICE 1** : 9 points

VOIE : ☑ GénéraleENSEIGNEMENT DE SPÉCIALITÉ : PHYSIQUE-CHIMIEDURÉE DE L'EXERCICE : 1h35CALCULATRICE AUTORISÉE : ☑ Oui « type collège »

EXERCICE 1: L'arôme d'ananas

1. Caractérisation des réactifs

Q1.

Le réactif B à une chaine carbonée comportant 2 atomes de carbone : Ethan Le réactif B porte un groupe OH : ... ol

_____H

Nom du réactif B : éthanol.

Nom de la fonction présente dans ce réactif : Fonction hydroxyle (non demandé : famille Alcool)

В

Q2.

,

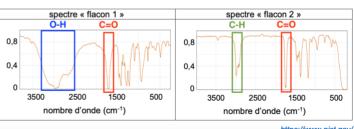
Représentation de Lewis du réactif A :

Cette molécule est un acide au sens de Brönsted car elle est capable de céder un proton H⁺.

Q3.

L'un des deux flacons contient de l'acide butanoïque, l'autre contient de la butanone.

Le spectre du flacon 1 présente :


- Une bande forte et large entre 2500 et 3200 cm⁻¹ caractéristique d'une liaison O-H
- Une bande forte vers 1700 cm⁻¹ caractéristique d'une liaison C=O

Le spectre du flacon 2 présente :

- Une bande moyenne vers 3000 cm⁻¹ caractéristique d'une liaison C-H
- Une bande forte vers 1700 cm⁻¹ caractéristique d'une liaison C=O

Document 2 - Bandes d'absorption caractéristiques en infrarouge (IR) et spectres étudiés

Liaison	Nombre d'onde (cm ⁻¹)	Intensité
О-Н	2500 à 3200	forte, large
C-H	2800 à 3000	moyenne
C=O	1650 à 1750	forte

https://www.nist.go

L'acide butanoïque est dans le flacon 1 et la butanone est dans le flacon 2.

2. Optimisation du rendement de synthèse

Q4.

On utilise l'acide butanoïque A comme réactif : il est corrosif. Il faut donc utiliser une blouse, des gants et des lunettes de protection.

On utilise l'éthanol B comme réactif : il est inflammable. Il faut donc s'éloigner du feu ou de toutes sources de chaleur. On produit du butanoate d'éthyle qui est nocif. Il faut donc travailler sous hôte aspirante.

	Formules	Caractéristiques physiques			
Noms	chimiques	Masses molaires et masses volumiques	Températures d'ébullition	Pictogrammes	
acide butanoïque A	C ₄ H ₈ O ₂	$M_{\rm A} = 88.0 \mathrm{g \cdot mol^{-1}}$ $\rho_{\rm A} = 0.96 \mathrm{g \cdot mL^{-1}}$	T _{ébullition} = 164 °C		
В	C ₂ H ₆ O	$M_{\rm B} = 46.0 \mathrm{g \cdot mol^{-1}}$ $\rho_{\rm B} = 0.79 \mathrm{g \cdot mL^{-1}}$	T _{ébullition} = 79 °C	®	
butanoate d'éthyle	C ₆ H ₁₂ O ₂	$M_{\text{ester}} = 116 \text{g} \cdot \text{mol}^{-1}$ $\rho_{\text{ester}} = 0.88 \text{g} \cdot \text{mL}^{-1}$	T _{ébullition} = 121 °C	(!)	
eau	H ₂ O	$M_{\rm eau} = 18.0 \mathrm{g \cdot mol^{-1}}$ $\rho_{\rm eau} = 1.0 \mathrm{g \cdot mL^{-1}}$	T _{ébullition} = 100 °C		

Q5.

Le chauffage à reflux permet d'accélérer la réaction sans perte de matière.

Q6.

$$n_A = \frac{m_A}{M_A}$$

Or

$$\rho_A = \frac{m_A}{V_A}$$

$$\frac{m_A}{V_A} = \rho_A$$

$$m_A = \rho_A \times V_A$$

D'où

$$n_{A} = \frac{\rho_{A} \times V_{A}}{M_{A}}$$

$$n_{A} = \frac{0.96 \times 13.8}{88.0}$$

$$n_{A} = 0.15 \text{ mol}$$

Q7.

Calculons la quantité de matière du réactif B :

$$n_B = \frac{\rho_B \times V_B}{M_B}$$

$$n_B = \frac{0.79 \times 8.8}{46.0}$$

$$n_B = 0.15 \text{ mol}$$

Le mélange réactionnel est stœchiométrique si :

$$\frac{n_{A}}{1} = \frac{n_{B}}{1}$$
$$\frac{0,15}{1} = \frac{0,15}{1}$$

Ainsi, le mélange réactionnel est stœchiométrique.

Q8.

Calculons la masse d'ester maximale qu'on peut théoriquement atteindre lors de cette synthèse :

$$\begin{split} n_{ester,max} &= \frac{m_{ester,max}}{M_{ester}} \\ \frac{m_{ester,max}}{M_{ester}} &= n_{ester,max} \\ m_{ester,max} &= n_{ester,max} \times M_{ester} \end{split}$$

Or

$$n_{\text{ester,max}} = x_{\text{max}} = \frac{n_{\text{A}}}{1} = 0.15$$

D'où

$$m_{ester,max} = 0.15 \times 116$$

$$m_{ester,max} = 17.4 g$$

Le rendement est défini par :

$$\begin{split} \eta &= \frac{m_{ester,reel}}{m_{ester,max}} \\ \eta &= \frac{11.7}{17.4} \\ \eta &= 0.67 \\ \eta &= 67 \, \% \end{split}$$

Q9.

Pour optimiser le rendement d'une estérification, on peut :

- Mettre un réactif en excès
- Éliminer un produit au fur et à mesure de sa synthèse

Q10.

Pour éliminer un produit au fur et à mesure de sa synthèse, il faut que sa température d'ébullition soit inférieure à celle des autres espèces (réactifs et produits).

L'espèce B (l'éthanol) à une température d'ébullition plus basse que le butanoate d'éthyle et que l'eau (les deux produits). Ainsi, la méthode qui consiste à éliminer un produit au fur et à mesure de sa synthèse n'est pas applicable

Noms	Formules chimiques	Caractéristiques physiques		
		Masses molaires et masses volumiques	Températures d'ébullition	Pictogrammes
acide butanoïque A	C ₄ H ₈ O ₂	$M_{\rm A} = 88.0 \mathrm{g \cdot mol^{-1}}$ $\rho_{\rm A} = 0.96 \mathrm{g \cdot mL^{-1}}$	T _{ébullition} = 164°C	
В	C ₂ H ₆ O	$M_{\rm B} = 46.0 \mathrm{g \cdot mol^{-1}}$ $\rho_{\rm B} = 0.79 \mathrm{g \cdot mL^{-1}}$	T _{ébullition} = 79 °C	®
butanoate d'éthyle	C ₆ H ₁₂ O ₂	$M_{\text{ester}} = 116 \text{g} \cdot \text{mol}^{-1}$ $\rho_{\text{ester}} = 0.88 \text{g} \cdot \text{mL}^{-1}$	T _{ébullition} = 121 °C	(!)
eau	H ₂ O	$M_{\rm eau} = 18.0 \rm g \cdot mol^{-1}$ $\rho_{\rm eau} = 1.0 \rm g \cdot mL^{-1}$	T _{ébullition} = 100 °C	

3. Suivi cinétique de la synthèse par titrage de l'acide A restant

Q11.

$$C_4H_8O_2(aq) + HO^-(aq) \rightarrow C_4H_7O_2^-(aq) + H_2O(l)$$

A l'équivalence, les réactifs sont introduits dans les proportions stœchiométriques :

$$\frac{n_{C_4H_8O_2}^{i}}{1} = \frac{n_{HO}^{eq}}{1}$$

$$\frac{n_A}{1} = \frac{n_{base,eq}}{1}$$

$$\begin{array}{ccc}
1 & 1 \\
n_A = n_{base,eq}
\end{array}$$

Q12.

$$n_A = n_{base,eq}$$

$$[A] \times V = C_{base} \times V_{eq}$$

$$[A] = \frac{C_{base} \times V_{eq}}{V}$$

Pour obtenir les valeurs de la concentration en quantité de matière d'acide butano \ddot{q} que [A] en fonction du temps t, il faut faire le calcul suivant :

$$[A] = \frac{C_{base} \times V_{eq}}{V}$$

Calculons la valeur de [A] à l'instant t = 5min:

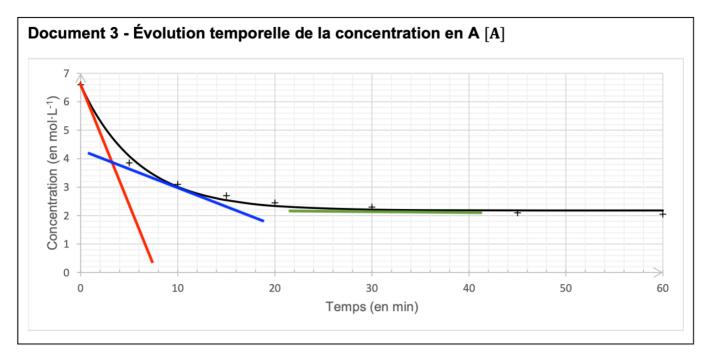
$$[A] = \frac{C_{base} \times V_{eq}}{V}$$

$$[A] = \frac{5,0 \times 10^{-1} \times 7,7}{1,0}$$

$$[A] = 3.9 \text{ mol. } L^{-1}$$

Q13.

La vitesse volumique de disparition $v_{\rm d,A}$ du réactif A lors de la synthèse du butanoate d'éthyle est définie par :


$$v_{d,A} = -\frac{\mathrm{d}[A]}{\mathrm{dt}}$$

Avec $v_{d,A}$ en mol.L $^{-1}$.s $^{-1}$

Q14.

$$v_{d,A} = -\frac{\mathrm{d}[A]}{\mathrm{dt}}$$

Graphiquement, la vitesse volumique de disparition $v_{\rm d,A}$ du réactif A est l'opposé (signe moins dans la formule) du coefficient directeur de la tangente à la courbe (dérivée).

En traçant la tangente à la courbe pour différents temps, on observe que la valeur absolue de la pente diminue au cours du temps.

Ainsi, la vitesse volumique de disparition du réactif A diminue au cours de la synthèse.

Q15.

Avec de l'acide sulfurique, la concentration finale en 1 est atteint plus rapidement.

Ainsi, l'ajout d'acide sulfurique a permis d'améliorer la cinétique de cette synthèse car il réduit sa durée.

Q16.

L'acide sulfurique accélère la réaction sans modifier l'état final de la réaction.

Ainsi, l'acide sulfurique joue le rôle de catalyseur de cette réaction.