Liban 2024 Sujet 1

CORRECTION Yohan Atlan © https://www.vecteurbac.fr/

CLASSE : Terminale **EXERCICE 2** : 6 points

VOIE : ⊠ Générale ENSEIGNEMENT : physique-chimie

DURÉE DE L'ÉPREUVE : 1h03 CALCULATRICE AUTORISÉE : ⊠Oui : sans mémoire, « type collège »

EXERCICE 2 : Utilisation d'un laser comme instrument de mesure

1. Vérification de la longueur d'onde du laser

Q.1.

Lorsque θ est petit, on considère que tan $(\theta) \approx \theta$:

$$\tan (\theta) = \frac{L}{2D}$$

$$\theta = \frac{L}{2D}$$

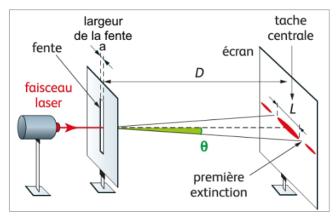


Figure 1: montage de diffraction

Q.2.

Le graphique montre une droite passant par l'origine : θ est proportionnel à $\frac{1}{a}$

$$\theta = k \times \frac{1}{a}$$

avec $k = 6,41 \times 10^{-7} m$

$$\theta = 6.41 \times 10^{-7} \times \frac{1}{a}$$

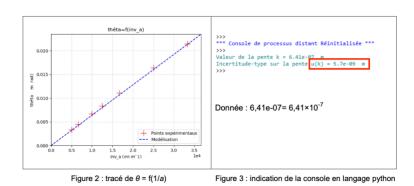
$$\theta = \frac{6,41 \times 10^{-7}}{a}$$

Or

$$\theta = \frac{\lambda}{3}$$

Par identification : $\lambda = 6.41 \times 10^{-7} m$

 $\lambda = 641 \, nm$


Q.3.

Calculons le z-score :

$$z = \left| \frac{\lambda_{mesure} - \lambda_{ref}}{u(\lambda)} \right|$$

$$z = \left| \frac{641 \times 10^{-9} - 650 \times 10^{-9}}{5,7 \times 10^{-9}} \right|$$

$$z = 1.6$$

z < 2: la valeur mesurée est en accord avec la longueur d'onde λ réf = 650 nm indiquée sur la notice fournie par le constructeur.

2. Mesure de la taille d'une maille rectangulaire d'un voile polyester

Q.4.

L'interfrange horizontale, notée i, est définie comme la distance entre les centres de deux taches lumineuses successives selon l'axe horizontal identifié sur la figure 6;

L'interfrange verticale, notée i', est définie comme la distance entre les centres de deux taches lumineuses successives selon l'axe vertical identifié sur la figure 6;

7i = 45 mm

$$i = \frac{45}{7}$$

 $i = 6.4 \, \text{mm}$

$$4i' = 18 \text{ mm}$$

$$i' = \frac{18}{4}$$

i' = 4.5 mm

Q.5.

$$i = \frac{\lambda \times D'}{b}$$

$$i \vee h - \lambda \vee D'$$

$$b = \frac{\lambda \times D'}{i}$$

$$b = \frac{650 \times 10^{-9} \times 6,17}{6,4 \times 10^{-3}}$$

$$b = 6.3 \times 10^{-4} m$$

$$\frac{u(b)}{b} = \sqrt{\left(\frac{u(D')}{D'}\right)^2 + \left(\frac{u(i)}{i}\right)^2 + \left(\frac{u(\lambda)}{\lambda}\right)^2}$$

$$u(b) = b \times \sqrt{\left(\frac{u(D')}{D'}\right)^2 + \left(\frac{u(i)}{i}\right)^2 + \left(\frac{u(\lambda)}{\lambda}\right)^2}$$

$$u(b) = 6.3 \times 10^{-4} \times \sqrt{\left(\frac{0.03}{6.17}\right)^2 + \left(\frac{0.1}{6.4}\right)^2 + \left(\frac{20}{650}\right)^2}$$

 $u(b) = 3 \times 10^{-5} \text{m}$ valeur arrondi à l'excès.

$$b = 6.3 \times 10^{-4} \pm 3 \times 10^{-5} \text{ m}$$

$$b = (6.3 \pm 0.3) \times 10^{-4} \text{ m}$$

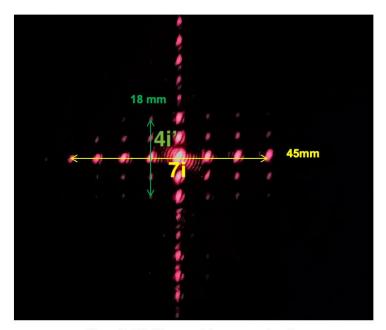


Figure 6 : interférences obtenues avec le voile

$$i' = \frac{\lambda \times D'}{b'}$$

$$i' \times b' = \lambda \times D'$$

$$b' = \frac{\lambda \times D'}{i'}$$

$$b' = \frac{650 \times 10^{-9} \times 6,17}{4,5 \times 10^{-3}}$$

$$b' = 8,9 \times 10^{-4} m$$

$$\begin{split} &\frac{u(b')}{b'} = \sqrt{\left(\frac{u(D')}{D'}\right)^2 + \left(\frac{u(i')}{i'}\right)^2 + \left(\frac{u(\lambda)}{\lambda}\right)^2} \\ &u(b') = b' \times \sqrt{\left(\frac{u(D')}{D'}\right)^2 + \left(\frac{u(i)}{i}\right)^2 + \left(\frac{u(\lambda)}{\lambda}\right)^2} \\ &u(b') = 8.9 \times 10^{-4} \times \sqrt{\left(\frac{0.03}{6.17}\right)^2 + \left(\frac{0.1}{4.5}\right)^2 + \left(\frac{20}{650}\right)^2} \\ &u(b') = 4 \times 10^{-5} \text{m valeur arrondi à l'excès.} \end{split}$$

$$b' = 8.9 \times 10^{-4} \pm 4 \times 10^{-5} \text{ m}$$

 $b' = (8.9 \pm 0.4) \times 10^{-4} \text{ m}$

Q.6.

D=1800 mm

D=1,800 m

D'>D.

L'interfrange i est proportionnelle à D :

$$i = \frac{\lambda \times D}{h}$$

Ainsi, pour obtenir une interfrange plus grande, donc plus facilement mesurable, la distance D utilisée dans le montage de la partie 1 a dû être remplacée par une distance D'.

Q.7.

Estimons le nombre d'ouvertures par cm² du voile polyester testé.

Nombre d'espaces horizontale	Dimensions
1	$6.3 \times 10^{-4} \text{ m}$
N	$1.0 \text{ cm} = 1.0 \times 10^{-2} \text{ m}$

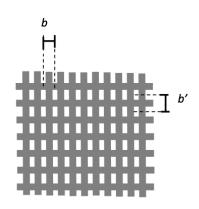


Figure 4. Schéma du maillage du voile

$$N = \frac{1.0 \times 10^{-2} \times 1}{6.3 \times 10^{-4}}$$

$$N = 16$$

Nombre d'espaces verticale	Dimensions
1	$8.9 \times 10^{-4} \text{ m}$
N'	$1.0 \text{ cm} = 1.0 \times 10^{-2} \text{ m}$

$$N' = \frac{1.0 \times 10^{-2} \times 1}{8.9 \times 10^{-4}}$$
$$N' = 11$$

Nombre d'ouvertures par cm² Nombre d'ouvertures = $N \times N'$ Nombre d'ouvertures = 16×11 Nombre d'ouvertures = 176 par cm^2

Une moustiquaire classique en comporte 50 par cm².

Salon les recommandations de l'ECARF (fondation européenne de recherche sur les allergies), une moustiquaire anti-pollen doit posséder à minima 3 fois plus d'ouvertures par cm².

Pour en comporter 3 fois plus il en faut : $50 \times 3 = 150$ ouvertures par cm^2

Le voile polyester testé comporte 3 fois plus d'ouvertures par cm² qu'une moustiquaire classique. Ainsi, le voile polyester testé est utilisable comme moustiquaire anti-pollen selon l'ECARF.