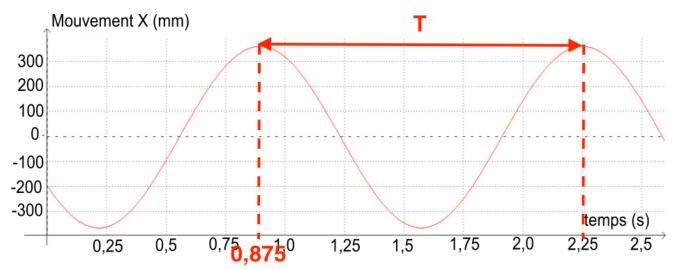
ÉVALUATION COMMUNE 2024 CORRECTION Yohan Atlan © https://www.vecteurbac.fr/

CLASSE: Première **VOIE**: ⊠ Générale □ Technologique □ Toutes voies (LV)


VOIE : ⊠ Générale ENSEIGNEMENT : Spécialité physique-chimie

DURÉE DE L'ÉPREUVE : 1 h CALCULATRICE AUTORISÉE : ⊠Oui □ Non

Le projet SEAREV - Système Électrique Autonome de Récupération de l'Énergie des Vagues

Oscillations du pendule simple

1.

$$T = 2,25 - 0,875$$

$$T = 1.38 s$$

La période des oscillations du pendule simple étudié a pour valeur 1,375 s.

2.

$$f = \frac{1}{T}$$

$$f = \frac{1}{1,38}$$

$$f = 0,72 Hz$$

3.

1 vague	1,38 s
N vague	50 <i>s</i>

$$N = \frac{1 \times 50}{1,38}$$

$$N = 36$$

Si on considère que des vagues atteignent un module SEAREV à un rythme constant, 36 vagues atteindraient le module en 50 secondes.

Les nombre de vague est important au vu du temps dans lequel elles arrivent.

L'énergie des vagues

4

Le module SEAREV reçoit de l'énergie mécanique et délivre de l'énergie electrique : le module SEAREV est un convertisseur d'énergie.

5.

Faisons une analyse des unités des expressions proposées :

$$Ec = \frac{1}{2} \times m \times v^{2}$$

$$[Ec] = \left[\frac{1}{2}\right] \times [m] \times [v]^{2}$$

$$J = Kg \cdot (m \cdot s^{-1})^{2}$$

$$J = Kg \cdot m^{2} \cdot s^{-2}$$

Vrai

L'énoncé nous indique que « un joule équivaut à un kg·m²·s⁻² » : l'expression proposée est correcte au vu de l'analyse des unités.

b)
$$Ec = \frac{1}{2} \times m \times v$$

$$[Ec] = \left[\frac{1}{2}\right] \times [m] \times [v]$$

$$J = Kg \cdot m \cdot s^{-1}$$

Faux

L'énoncé nous indique que « un joule équivaut à un kg·m²·s⁻² » : l'expression proposée est fausse au vu de l'analyse des unités.

c)

$$Ec = \frac{1}{2} \times v^{2}$$

$$[Ec] = \left[\frac{1}{2}\right] \times [v]^{2}$$

$$J = (m \cdot s^{-1})^{2}$$

$$J = m^{2} \cdot s^{-2}$$

Faux

L'énoncé nous indique que « un joule équivaut à un kg·m²·s⁻² » : l'expression proposée est fausse au vu de l'analyse des unités.

d)
Epp =
$$m \times g$$

[Epp] = $[m] \times [g]$
 $J = kg \cdot m \cdot s^{-2}$

L'énoncé nous indique que « un joule équivaut à un kg·m²·s⁻² » : l'expression proposée est fausse au vu de l'analyse des unités.

e)
Epp =
$$m \times g \times z$$

[Epp] = $[m] \times [g] \times [z]$
 $J = kg \cdot m \cdot s^{-2} \cdot m$
 $J = Kg \cdot m^2 \cdot s^{-2}$

Vrai

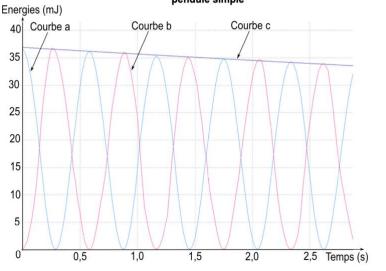
L'énoncé nous indique que « un joule équivaut à un kg·m²·s⁻² » : l'expression proposée est correcte au vu de l'analyse des unités.

f)
Epp =
$$g \times z$$

[Epp] = $[g] \times [z]$
 $J = m \cdot s^{-2} \cdot m$
 $J = m^2 \cdot s^{-2}$

Faux

L'énoncé nous indique que « un joule équivaut à un kg·m²·s⁻² » : l'expression proposée est fausse au vu de l'analyse des unités.


6.

Em = Ec + Epp: l'énergie mécanique est la somme de l'énergie cinétique et l'énergie potentielle de pesanteur. La courbe la représentant est la somme des deux autres : courbe c

 $\mathrm{Ec}=\frac{1}{2} \times \mathrm{m} \times v^2$: Le pendule est lâché, sans vitesse initiale. Ainsi, à l'instant initiale, la vitesse étant nulle, l'énergie cinétique est nulle : courbe b

Epp = m × g × z : l'énergie potentielle de pesanteur est proportionnelle à l'altitude. Le pendule est lâché, avec un angle α =30°. L'altitude initiale n'est pas nulle. L'énergie potentielle initiale Epp n'est pas nulle : Courbe a

Simulation des variations des énergies cinétique, potentielle et mécanique d'un pendule simple

7.

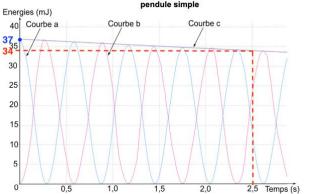
L'énergie mécanique (courbe c) du pendule diminue au cours du temps. Ainsi, l'énergie mécanique n'est pas conservée au cours de son mouvement.

8.

Théorème de l'énergie mécanique :

$$\Delta \text{Em} = W_{BC}(\vec{F}_{\text{non conservatives}})$$

$$W_{BC}(\vec{F}_{\text{non conservatives}}) = \Delta \text{Em}$$


$$W_{BC}(\vec{F}_{\text{non conservatives}}) = \text{Em}(t = 2.5 \text{ s}) - \text{Em}(t = 0 \text{ s})$$

Graphiquement, on obtient:

- Em(t = 2.5 s) = 34 mJ
- Em(t = 0 s) = 37 mJ

$$W_{BC}(\vec{F}_{\text{non conservatives}}) = 34 - 37$$

 $W_{BC}(\vec{F}_{\text{non conservatives}}) = -3.0 \text{ mJ}$

Simulation des variations des énergies cinétique, potentielle et mécanique d'u pendule simple

9.

La force de frottement est une force non conservative s'exerçant sur un module SEAREV.

10.

La consommation d'électricité annuelle moyenne par foyer en France est d'environ 5 MWh.

Calculons la consommation d'électricité annuelle moyenne de 8 000 foyers français :

$$E_{8000} = 5 \times 10^6 \times 8000$$

 $E_{8000} = 4 \times 10^{10} Wh$

D'après l'énoncé : « Les développeurs estiment que l'on pourrait installer en mer des parcs de machines avec une densité de puissance de l'ordre de 25 MW par km² »

Calculons l'énergie annuelle produite par un parc de machine à 1 km² :

$$E_{produite} = P_{produite} \times \Delta t$$

Remarque : en mettant le temps (une année ici) en h on obtient des Wh

$$E_{produite} = 25 \times 10^6 \times 1 \times 365,25 \times 24$$

$$E_{produite} = 2.2 \times 10^{11} Wh$$

L'énergie annuelle produite par un parc de machine à 1 km² est supérieure à la consommation d'électricité annuelle moyenne de 8 000 foyers français.

Ainsi, un parc de machines permettrait de répondre aux besoins énergétiques annuels de 8 000 foyers français, comme indiqué précédemment.