BACCALAURÉAT GÉNÉRAL

Épreuve pratique de l'enseignement de spécialité physique-chimie Évaluation des Compétences Expérimentales

Cette situation d'évaluation fait partie de la banque nationale.

ÉNONCÉ DESTINÉ AU CANDIDAT						
NOM:	Prénom :					
Centre d'examen :	n° d'inscription :					

Cette situation d'évaluation comporte **cinq** pages sur lesquelles le candidat doit consigner ses réponses. Le candidat doit restituer ce document avant de sortir de la salle d'examen.

Le candidat doit agir en autonomie et faire preuve d'initiative tout au long de l'épreuve.

En cas de difficulté, le candidat peut solliciter l'examinateur afin de lui permettre de continuer la tâche.

L'examinateur peut intervenir à tout moment, s'il le juge utile.

L'usage de la calculatrice avec mode examen actif est autorisé. L'usage de calculatrice sans mémoire « type collège » est autorisé.

CONTEXTE DE LA SITUATION D'ÉVALUATION

L'eau oxygénée est une solution aqueuse de peroxyde d'hydrogène, de formule H_2O_2 . L'eau oxygénée est un antiseptique, un désinfectant et un agent de blanchiment efficace. Elle peut servir à décolorer les cheveux, à lutter contre les infections de la peau ou de la bouche, à nettoyer les lentilles de contact, à enlever des taches, à blanchir le linge, à enlever les moisissures, etc.

On s'intéresse à la cinétique de la réaction entre l'eau oxygénée et les ions iodure, pour laquelle le peroxyde d'hydrogène joue le rôle d'oxydant et les ions iodure le rôle de réducteur.

La cinétique chimique étudie tous les facteurs influant sur la durée d'une transformation chimique.

Le but de cette épreuve est de déterminer le temps de demi-réaction de la réaction entre le peroxyde d'hydrogène et les ions iodure et de prévoir son évolution en modifiant un facteur cinétique.

INFORMATIONS MISES À DISPOSITION DU CANDIDAT

Temps de demi-réaction

Le temps de demi-réaction, noté $t_{1/2}$, est la durée au bout de laquelle l'avancement est égal à la moitié de l'avancement final.

Dans la situation étudiée, à *t*_{1/2} l'absorbance est égale à la moitié de l'absorbance maximale.

Réaction chimique entre le peroxyde d'hydrogène et les ions iodure

On étudie l'évolution au cours du temps de la réaction entre le peroxyde d'hydrogène et les ions iodure l⁻ en milieu acide.

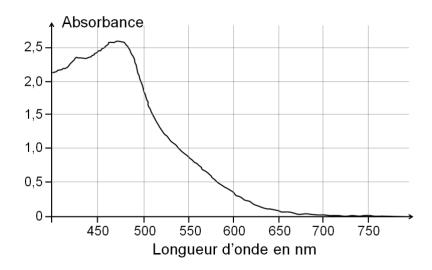
Cette réaction est modélisée par l'équation suivante :

$$H_2O_2(aq) + 2 I^-(aq) + 2 H^+(aq) \rightarrow 2 H_2O(\ell) + I_2(aq)$$

Le diiode l₂ donne une teinte orange—brun à la solution. Les autres espèces chimiques intervenant dans la réaction sont incolores. Toutefois la solution d'iodure de potassium peut être jaune pâle selon sa concentration.

Dans les conditions de l'expérience, le peroxyde d'hydrogène constitue le réactif limitant.

Protocole proposé


Solutions aqueuses nécessaires :

- S₁: solution aqueuse de peroxyde d'hydrogène de concentration en quantité de matière 1,0×10⁻² mol·L⁻¹;
- S₂: solution aqueuse d'iodure de potassium de concentration en quantité de matière 1,0×10⁻¹ mol·L⁻¹;
- S₃: solution aqueuse d'acide sulfurique de concentration en quantité de matière 1,0 mol·L⁻¹.

On propose le protocole suivant afin de déterminer le temps de demi-réaction de la réduction du peroxyde d'hydrogène par les ions iodure.

- Régler le spectrophotomètre à la longueur d'onde optimale.
- Faire le réglage du « blanc » avec la solution S₂ puis procéder aux réglages préalables pour réaliser le suivi temporel de l'absorbance de la solution étudiée pendant 510 secondes avec des mesures réalisées toutes les 30 secondes.
- Le port de gants et de lunettes est obligatoire pour la réalisation du mélange.
- Prélever 5,0 mL de solution S₁ et les introduire dans un bécher A.
- Dans un bécher B, introduire 5 mL de solution S2 et 5 mL de solution S3.
- Verser le contenu du bécher B dans le bécher A.
- Le plus rapidement possible, verser une quantité suffisante du mélange dans une cuve de spectrophotomètre, introduire la cuve dans le spectrophotomètre et lancer l'acquisition du suivi temporel de l'absorbance de la solution.

Spectre d'absorption d'une solution aqueuse de diiode

TRAVAIL À EFFECTUER

- 1. Étude qualitative de la réaction (30 minutes conseillées)
 - 1.1. Préparation de la solution d'iodure de potassium

À partir du matériel et des solutions mis à disposition, indiquer comment préparer une solution d'iodure de potassium S_2 de concentration en quantité de matière de $1,0\times10^{-1}$ mol· L^{-1} .

On dispose d'une solution d'iodure de potassium S_2 de concentration en quantité de matière de xxx mol· L^{-1} (valeur non donnée par le sujet mais certainement inscrite sur le flacon posé sur la paillasse du candidat).

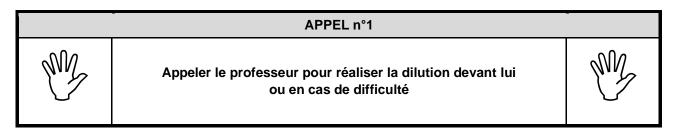
Lors d'une dilution, la quantité de matière se conserve :

$$n_{\rm m} = n_{\rm f}$$

Or n = cV

donc $c_m V_m = c_f V_f$

d'où le volume de la solution mère à prélever :


$$V_{\rm m} = \frac{c_{\rm f} V_{\rm f}}{c_{\rm m}}$$

On calcul avec $c_i=1,0\times10^{-1}$ mol·L⁻¹, $c_m=xxx$ mol·L⁻¹ et Vf le volume de la fiole jaugée présente sur la paillasse.

Protocole expérimental:

- On prélève le volume Vm à l'aide d'une pipete jaugée
- On introduit Vm dans une fiole jaugée de volume Vf
- On complète avec de l'eau distillée jusqu'au trait de jauge et on homogénéise.

Préparer la solution d'iodure de potassium de concentration en quantité de matière de 1,0×10⁻¹ mol·L⁻¹. A faire expérimentalement.

1.2. Caractéristiques de la réaction

Dans un bécher de 50 mL, introduire dans l'ordre, 5 mL d'eau oxygénée de concentration 1.0×10^{-2} mol·L⁻¹, 5 mL de solution d'acide sulfurique et 5 mL de solution d'iodure de potassium de concentration 1.0×10^{-1} mol·L⁻¹. Les volumes peuvent être mesurés à l'aide d'éprouvettes graduées.

À partir des observations, expliquer pourquoi il est possible d'effectuer un suivi spectrophotométrique et cinétique de cette réaction.

La solution est initialement incolore. Au fur et à mesure elle se colore en orange-brun. La coloration de la solution se fait lentement.

La réaction étant lente, un suivi cinétique est possible.

La solution change de teinte, un suivi spectrophotométrique est possible.

1.3. Choix de la longueur d'onde

A l'aide des documents fournis, déterminer une longueur d'onde adaptée pour le suivi temporel en justifiant la réponse.

Le diiode I_2 donne une teinte orange—brun à la solution. Les autres espèces chimiques intervenant dans la réaction sont incolores. On choisit sur le spectre d'absorption d'une solution aqueuse de diiode $\lambda_{max} = 475 \text{ nm}$

Spectre d'absorption d'une solution aqueuse de diiode

APPEL n°2

Appeler le professeur pour lui présenter les réponses et le choix de la longueur d'onde ou en cas de difficulté

2. Mise en œuvre du protocole (20 minutes conseillées)

En utilisant le résultat de la question 1.3., mettre en œuvre le protocole proposé dans les informations mises à disposition afin de réaliser le suivi spectrophotométrique de la réaction de réduction du peroxyde d'hydrogène $H_2O_2(aq)$ par les ions iodure $I^-(aq)$. A faire expérimentalement.

APPEL n°3 Appeler le professeur pour lui présenter le suivi spectrophotométrique ou en cas de difficulté

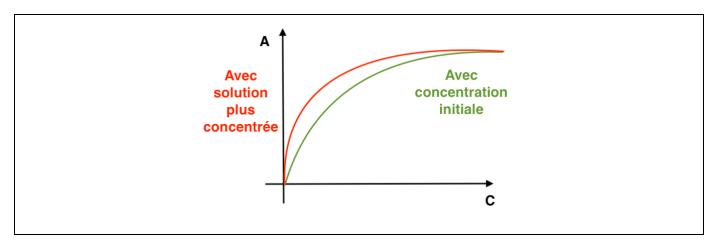
En attendant que les mesures exécutées par le spectrophotomètre s'effectuent, passer à la partie 3 de l'énoncé.

À l'aide des informations mises à disposition et de la courbe obtenue avec le spectrophotomètre, déterminer le temps de demi-réaction. Détailler la méthode utilisée.

Sur la courbe obtenue, on repère A_{max} lorsque l'absorbance devient constante, ici $A_{max} = xxx$ (valeur expérimentale). Graphiquement, pour $A_{max} / 2$ on lit $t_{1/2} = xxx$ (valeur expérimentale).

.....

APPEL FACULTATIF						
	Appeler le professeur en cas de difficulté	M				


3. Modification d'un facteur cinétique (10 minutes conseillées)

On souhaite modifier le temps de demi-réaction. Proposer une modification d'un facteur cinétique qui permette de diminuer le temps de demi-réaction sans changer l'avancement final, avec le matériel et les solutions mis à disposition. Justifier la réponse.

Pour diminuer le temps de demi-réaction, il faut augmenter la vitesse de réaction. On peut augmenter la concentration des réactifs. On utilise la solution mère des ions iodure au lieu d'utiliser la solution diluée.

Remarque : lo	Remarque : le matériel disponible sur la paillasse ne permet pas d'augmenter la température.								

Représenter sur un schéma l'allure de la courbe qui serait alors obtenue comparativement à celle de l'expérience de la partie 2.

Défaire le montage et ranger la paillasse avant de quitter la salle.