TAMIS À MICROFOSSILES CORRECTION © https://www.vecteurbac.fr/

Session 2025

BACCALAURÉAT GÉNÉRAL

Épreuve pratique de l'enseignement de spécialité physique-chimie Évaluation des Compétences Expérimentales

Cette situation d'évaluation fait partie de la banque nationale.

ÉNONCÉ DESTINÉ AU CANDIDAT				
NOM:	Prénom :			
Centre d'examen :	n° d'inscription :			

Cette situation d'évaluation comporte **cinq** pages sur lesquelles le candidat doit consigner ses réponses. Le candidat doit restituer ce document avant de sortir de la salle d'examen.

Le candidat doit agir en autonomie et faire preuve d'initiative tout au long de l'épreuve.

En cas de difficulté, le candidat peut solliciter l'examinateur afin de lui permettre de continuer la tâche.

L'examinateur peut intervenir à tout moment, s'il le juge utile.

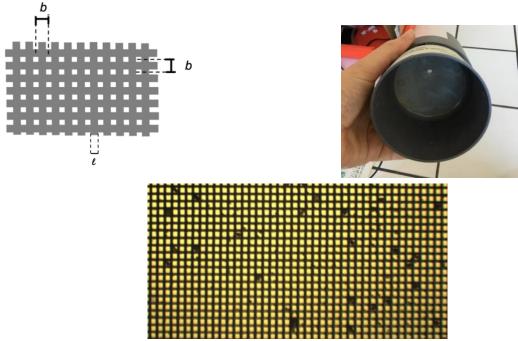
L'usage de calculatrice avec mode examen actif est autorisé. L'usage de calculatrice sans mémoire « type collège » est autorisé.

CONTEXTE DE LA SITUATION D'ÉVALUATION

Pour isoler des microfossiles d'une roche appelée « marne », constituée d'argile et de calcaire, des tamis de différentes tailles peuvent être utilisés. La marne rendue liquide après ajout d'eau traverse alors un premier tamis qui retient les graviers ; ce liquide traverse ensuite un second tamis qui permet de séparer et de récupérer des microfossiles qui étaient éventuellement contenus dans la roche. On peut ainsi récupérer des microfossiles « foraminifères ».

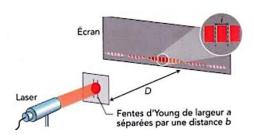
Le but de cette épreuve est de déterminer si le tamis proposé permet de récupérer des microfossiles « foraminifères », qui sont d'une taille supérieure à 100 µm.

INFORMATIONS MISES À DISPOSITION DU CANDIDAT


Tamis

Le tamis mis à disposition est formé d'une grille qui peut être considérée comme un entrelacement de fils rigides, fins très proches, verticaux et horizontaux.

La largeur du fil, notée ℓ , constituant le tamis est égale à



On note *b* la distance entre deux trous consécutifs constituant le maillage. Cette distance est identique verticalement et horizontalement, les mailles sont donc carrées.

Photographie d'une partie du tamis grossi à la loupe binoculaire. Les points noirs correspondent à des grains issus de roche retenus par le tamis.

Interférences par des fentes de Young

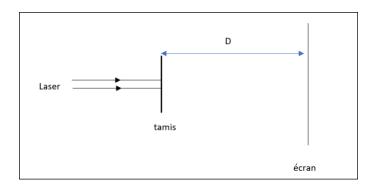
Deux fentes de Young séparées d'une distance *b* sont éclairées par un laser. Chaque fente diffracte la lumière. Les deux faisceaux de lumière diffractés par les doubles-fentes interfèrent et forment une figure d'interférences dans une figure de diffraction.

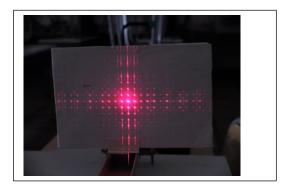
L'interfrange, noté *i*, est défini comme étant la distance entre les centres de deux franges brillantes ou deux franges sombres.

L'expression de l'interfrange est donnée par la relation : $i = \frac{\lambda \times D}{b}$

Avec:

λ la longueur d'onde du rayon laser;


D la distance fentes-écran;


b la distance séparant les deux fentes.

TAMIS À MICROFOSSILES

CORRECTION © https://www.vecteurbac.fr/

Interférences obtenues par l'éclairement du tamis par un laser

Les fils de petite dimension constituant le tamis diffractent la lumière du laser. La superposition de ces figures de diffraction donne la figure d'interférences représentée ci-dessus.

L'interfrange, noté *i*, est défini comme la distance séparant deux points lumineux successifs sur une droite horizontale ou verticale.

Cet interfrange, obtenu à l'aide d'un maillage dont les fils sont séparés d'une distance b, a la même expression que l'interfrange obtenu à l'aide d'une double fente de Young séparée d'une distance b, c'est-à-dire :

$$i = \frac{\lambda \times D}{h}$$

Incertitude de répétabilité

Pour une série de mesures pour lesquelles on suppose les conditions de répétabilité vérifiées, on admet que la meilleure estimation de la valeur x de la grandeur X est égale à la moyenne arithmétique \bar{x} des N valeurs mesurées est :

$$\overline{X} = \frac{1}{N} \sum_{k=1}^{N} X_k$$

On détermine l'incertitude de répétabilité u(x) à l'aide de la relation $u(x) = \frac{s_X}{\sqrt{N}}$

Où s_x est l'écart-type expérimental de la moyenne \bar{x} avec $s_x = \sqrt{\frac{\sum_{k=1}^{N}(x_k - \bar{x})^2}{N-1}}$

Donnée

Longueur d'onde du laser mis à disposition : $\lambda = 650$ nm.

TRAVAIL À EFFECTUER

- 1. Interfrange i de la figure d'interférences (20 minutes conseillées)
- 1.1 D'après les informations mises à disposition, que peut-on dire alors du produit $i \cdot b$ pour différents écarts de doubles fentes éclairées par un même laser et pour une distance D fixe ?

$$i = \frac{\lambda \times D}{b}$$
$$i \times b = \lambda \times D$$

Or λ est constant et D également. Ainsi $\lambda \times D = Constante$ Donc le produit $i \times b = Constante$

CORRECTION © https://www.vecteurbac.fr/

1.2 À l'aide du matériel mis à disposition, proposer un protocole expérimental pour déterminer le plus précisément la valeur de ce produit *i* · *b*. Cette valeur sera appelée *k*.

On choisit une distance D la plus grande possible.

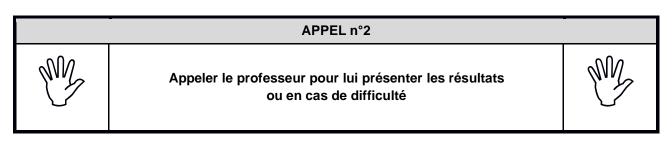
On éclaire la fente de Young

Pour mesurer l'interfrange i le plus précisément possible on en mesure plusieurs et on déduit i.

On recommence avec les autres fentes de Young fournis

On calcule le produit $i \times b$ pour chaque fente de Young.

On fait la moyenne des valeurs trouvées


APPEL n°1				
	Appeler le professeur pour lui présenter le protocole ou en cas de difficulté			

1.3 Mettre en œuvre le protocole proposé et relever les mesures dans le tableau ci-dessous.

b (mm)	Valeur expérimentale	Valeur expérimentale	Valeur expérimentale	Valeur expérimentale
i (mm)	Valeur expérimentale	Valeur expérimentale	Valeur expérimentale	Valeur expérimentale
i∙b (mm²)	Valeur expérimentale	Valeur expérimentale	Valeur expérimentale	Valeur expérimentale

À l'aide d'une calculatrice utilisée en mode statistique, calculer la valeur moyenne du produit $i \cdot b$, notée \overline{k} , ainsi que son incertitude associée u(k). Noter les résultats ci-dessous.

$$\bar{k} = \dots$$
 Valeur expérimentale. $u(k) = \dots$ Valeur expérimentale

- 2. Étude du tamis (30 minutes conseillées)
- 2.1 En utilisant le résultat obtenu au paragraphe précédent, proposer un protocole pour déterminer la distance *b* séparant deux trous consécutifs du tamis.

On utilise la même distance D que précédemment

On éclaire la fente de Young

on mesure l'interfrange i le plus précisément possible (plusieurs et on déduit i).

Le produit $i \times b = \overline{k}$ est connu grâce à notre expérience, on en déduit b :

$$b = \frac{\overline{k}}{i}$$

2.2 Mettre en œuvre ce protocole.

Noter les résultats obtenus et en déduire la distance *b* entre deux trous consécutifs du tamis. Valeur expérimentale

APPEL n°3 Appeler le professeur pour lui présenter les résultats expérimentaux ou en cas de difficulté

2.3 Évaluer l'incertitude-type u(i) sur la mesure de l'interfrange i: u(i) = ...0,5 mm (la moitié d'une graduation)

L'incertitude-type u(b) sur la grandeur b peut être calculée à partir de la relation :

$$\frac{\mathsf{u}(b)}{b} = \sqrt{\left(\frac{\mathsf{u}(i)}{i}\right)^2 + \left(\frac{\mathsf{u}(k)}{k}\right)^2}$$

où u(x) désigne l'incertitude-type associée à la grandeur x

2.4 Déterminer u(b) puis présenter le résultat de b :

3. Récupération des microfossiles (10 minutes conseillées)

Le tamis étudié permet-il de récupérer les microfossiles d'une taille supérieure à 100 µm ? Justifier la réponse à partir des résultats expérimentaux obtenus et des informations mises à disposition.

Il faut faire l'expérience :

si b<100 μm : le tamis étudié permet de récupérer les microfossiles d'une taille supérieure à 100 μm. si b>100 μm : le tamis étudié ne permet pas de récupérer les microfossiles d'une taille supérieure à 100 μm.

Ranger la paillasse avant de quitter la salle.