RÉACTION DU MAGNÉSIUM CORRECTION © https://www.vecteurbac.fr/

Session 2025

BACCALAURÉAT GÉNÉRAL

Épreuve pratique de l'enseignement de spécialité physique-chimie Évaluation des Compétences Expérimentales

Cette situation d'évaluation fait partie de la banque nationale.

ÉNONCÉ DESTINÉ AU CANDIDAT

NOM:	Prénom :
Centre d'examen :	n° d'inscription :
•	cinq pages sur lesquelles le candidat doit consigner ses réponses.
Le candidat doit restituer ce document	avant de sortir de la salle d'examen.
Le candidat doit agir en autonomie et f	aire preuve d'initiative tout au long de l'épreuve.
•	olliciter l'examinateur afin de lui permettre de continuer la tâche.
L'examinateur peut intervenir à tout mo	•

CONTEXTE DE LA SITUATION D'EVALUATION

collège » est autorisé.

Certaines réactions sont totales et très rapides, voire instantanées, comme les explosions. D'autres sont lentes et peuvent durer plusieurs mois ou années (comme la formation de la rouille).

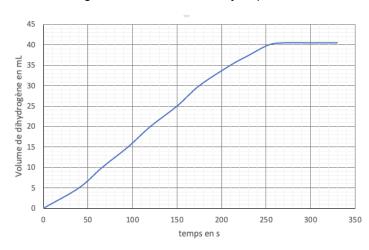
L'usage de calculatrice avec mode examen actif est autorisé. L'usage de calculatrice sans mémoire « type

En modifiant certains paramètres tels que la température, la pression, la concentration des réactifs, la nature du solvant, l'état de division d'un réactif solide ou l'utilisation éventuelle de catalyseurs, le chimiste peut modifier la vitesse de la transformation. Il peut la rendre plus rapide, ce qui peut présenter un intérêt économique pour l'industrie, ou au contraire plus lente, par exemple pour des raisons de sécurité.

Le but de cette épreuve est de modifier la vitesse d'une réaction chimique donnée et d'en réaliser le suivi temporel.

CORRECTION © https://www.vecteurbac.fr/

INFORMATIONS MISES À DISPOSITION DU CANDIDAT


Réaction entre le magnésium et l'acide chlorhydrique

Le métal magnésium Mg(s) réagit avec une solution d'acide chlorhydrique. Un des produits de cette réaction est le dihydrogène gazeux $H_2(g)$. L'équation de la réaction s'écrit :

$$Mg(s) + 2 (H^{+}(aq) + C\ell^{-}(aq)) \rightarrow Mg^{2+}(aq) + H_{2}(g) + 2 C\ell^{-}(aq)$$

Suivi cinétique par mesure de volume de gaz

Voici la courbe représentant l'évolution du volume de dihydrogène formé au cours du temps durant la réaction entre le magnésium et l'acide chlorhydrique.

Conditions de l'expérience :

Température du milieu réactionnel :

T = 20 °C

Pression atmosphérique :

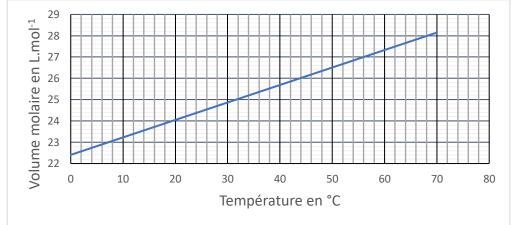
P = 1013 hPa

Masse de magnésium en ruban utilisé :

m(Mg) = 40 mg

Volume d'acide chlorhydrique :

 $V_a = 100 \text{ mL}$


Concentration de la solution d'acide chlorhydrique :

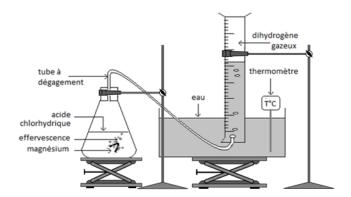
 $c_a = 0.50 \text{ mol} \cdot \text{L}^{-1}$

(le magnésium est le réactif limitant)

Volume molaire d'un gaz et température

Courbe représentant l'évolution du volume molaire d'un gaz en fonction de sa température à la pression atmosphérique normale (P = 1013 hPa)

Protocole pour le suivi cinétique et dispositif expérimental


- Découper la longueur nécessaire de ruban de magnésium
- Replier légèrement le morceau de magnésium sur lui-même
- Remplir à ras bord l'éprouvette de 50 mL avec de l'eau, la boucher avec la paume de la main et la retourner dans l'eau contenue dans le cristallisoir en veillant à ce qu'aucune bulle d'air ne pénètre à l'intérieur
- Fixer l'éprouvette retournée dans l'eau à l'aide de la pince et de la potence (laisser un petit espace entre le fond du cristallisoir et l'éprouvette)

CORRECTION © https://www.vecteurbac.fr/

- Placer 100 mL de solution d'acide chlorhydrique à 0,50 mol·L⁻¹ dans l'erlenmeyer Les quatre étapes suivantes sont à exécuter le plus rapidement possible :
 - o Introduire le morceau de magnésium dans l'erlenmeyer
 - o Boucher l'erlenmeyer avec le tube à dégagement
 - o Introduire l'extrémité du tube sous l'éprouvette contenant l'eau
 - Déclencher le chronomètre
- Relever les dates auxquelles 5,0 mL de gaz supplémentaire sont formés
- Noter le temps nécessaire à la disparition totale du magnésium, noté t_{final}
- Noter le volume final de gaz obtenu, noté Vfinal

L'erlenmeyer est placé sur un support élévateur ; le cristallisoir l'est également afin de faciliter le positionnement du tube à dégagement dans l'éprouvette.

On suppose que le gaz présent dans l'éprouvette est à la même température que l'eau du cristallisoir.

Données

- Masse molaire du magnésium : M(Mg) = 24,3 g⋅mol⁻¹
- Pictogrammes de sécurité :

Magnésium en ruban	Acide chlorhydrique

TRAVAIL À EFFECTUER

1. Élaboration de la démarche (20 minutes conseillées)

On considère la réaction entre le magnésium solide et l'acide chlorhydrique.

1.1. À l'aide des informations et du matériel mis à disposition, identifier au moins deux paramètres *a priori* susceptibles de modifier la cinétique de cette réaction.

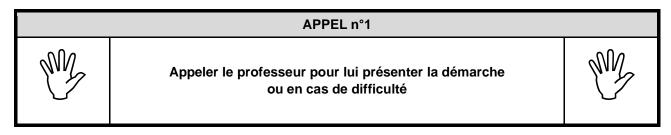
Les trois paramètres qui, à priori sont susceptibles de modifier l'évolution temporelle de cette réaction sont :

- La température du système réactionnel
- La concentration de l'acide chlorhydrique
- La surface de contact du magnésium.
- 1.2. On souhaite mettre en œuvre le suivi cinétique de cette réaction à une température environ égale à 30 °C au lieu de 20 °C. Proposer un protocole pour mettre en œuvre ce suivi.

On garde le même protocole avec les ajustements suivants :

- On place 100 mL de solution d'acide chlorhydrique à 0,50 mol·L⁻¹ dans l'erlenmeyer qui est dans un bain marie a 30°C.
- On met un thermomètre dans la solution d'acide chlorhydrique.
- On attend que la solution d'acide chlorhydrique soit à 30°C

RÉACTION DU MAGNÉSIUM CORRECTION © https://www.vecteurbac.fr/


Session 2025

Proposer la démarche à suivre pour exploiter les résultats.

On relève les dates auxquelles 5,0 mL de gaz supplémentaire sont formés

On trace la courbe V = f(t)

On compare le temps de demi-réaction obtenue a 30°C et celui a 20°C.

2. Mise en œuvre de la démarche (20 minutes conseillées)

La masse linéique du magnésium en ruban vaut g⋅m⁻¹. Elle correspond à la masse d'une longueur d'un mètre de ce ruban.

Évaluer la longueur du ruban de magnésium à prélever pour obtenir une masse m = 40 mg de magnésium. Noter le calcul et la valeur ci-dessous.

$$\mu = \frac{m}{L}$$

$$\mu \times L = m$$

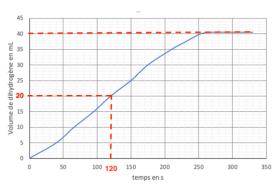
$$L = \frac{m}{l}$$

On fait l'application numérique avec la valeur de la masse linéique du magnésium donnée.

Mettre en œuvre la démarche validée dans la partie 1.2. et noter les valeurs des mesures effectuées dans le tableau ci-dessous.

V _{gaz} (mL)	0	5	10	15	20	25	30	35	40	V _{final} = 40
t (s)	0									$t_{final} =$

APPEL n°2	
Appeler le professeur pour lui présenter les résultats expérimentaux ou en cas de difficulté	


3. Exploitation des résultats (20 minutes conseillées)

3.1. Évaluer les temps de demi-réaction à 20 °C et à la température de l'expérience.

Pour trouver $t_{1/2}$ à 20°C, on lit le temps pour lequel V=Vf/2= 20 mL Graphiquement, à 20°C : $t_{1/2}$ =120s.

Pour trouver $t_{1/2}$ à 30°C, on trace la courbe V = f(t) et on lit le temps pour lequel V = Vf/2 = 20 mL.

Il faut faire l'expérience pour trouver $t_{1/2}$ à 30°C.

Proposer une conclusion à l'étude réalisée en lien avec le but de cette épreuve.

En faisant l'expérience, on trouve que $t_{1/2}$ à 30°C est inférieure à $t_{1/2}$ à 20°C.

On en déduit que la température modifie l'évolution temporelle de cette réaction. Lorsqu'elle augmente, la réaction est plus rapide.

APPEL facultatif Appeler le professeur en cas de difficulté

3.2. Dans les conditions de l'expérience, le volume théorique de dihydrogène recueilli, lorsque la réaction est terminée, est donné par la relation :

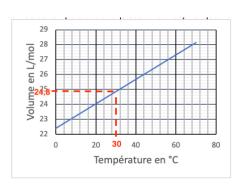
$$V_{th\acute{e}orique} = \frac{m}{M} \cdot V_{molaire}$$

m: masse de magnésium mise en jeu

M : masse molaire du magnésium

*V*_{molaire}: volume molaire du dihydrogène gazeux dans les conditions expérimentales de pression et de température*

* le dihydrogène est à température ambiante comme l'eau du cristallisoir


Évaluer le volume théorique du dihydrogène et le comparer au volume expérimental obtenu V_{final}.

Dans les conditions de l'expérience soit 30°C, graphiquement,

$$V_{molaire} = 24.8 \text{ L.} mol^{-1}$$

$$V_{th\acute{e}orique} = \frac{m}{M} \cdot V_{molaire}$$

$$V_{th\acute{e}orique} = \frac{40 \times 10^{-3}}{23.4} \times 24.8$$

$$V_{\text{th\'eorique}} = 4.2 \times 10^{-2} L$$

$$V_{th\acute{e}orique}$$
= 42 m L

Le volume théorique du dihydrogène 42 mL est supérieur au volume expérimental obtenu V_{final} =20 mL.

Énoncer deux sources d'écart qui permettraient de justifier une éventuelle différence entre le volume théorique et le volume expérimental obtenu.

Les sources d'écart possibles sont :

- Une masse de ruban différence des 40 mg demandé;
- Une lecture de la valeur du volume de dihydrogène peu précise.

Défaire le montage et ranger la paillasse avant de quitter la salle.