BACCALAURÉAT GÉNÉRAL

Épreuve pratique de l'enseignement de spécialité physique-chimie Évaluation des Compétences Expérimentales

Cette situation d'évaluation fait partie de la banque nationale.

ÉNONCÉ DESTINÉ AU CANDIDAT NOM : Prénom : Centre d'examen : n° d'inscription :

Cette situation d'évaluation comporte **quatre** pages sur lesquelles le candidat doit consigner ses réponses. Le candidat doit restituer ce document avant de sortir de la salle d'examen.

Le candidat doit agir en autonomie et faire preuve d'initiative tout au long de l'épreuve.

En cas de difficulté, le candidat peut solliciter l'examinateur afin de lui permettre de continuer la tâche.

L'examinateur peut intervenir à tout moment, s'il le juge utile.

L'usage de calculatrice avec mode examen actif est autorisé. L'usage de calculatrice sans mémoire « type collège » est autorisé.

CONTEXTE DE LA SITUATION D'ÉVALUATION

Depuis l'invention de la première lunette astronomique par Galilée au début du XVIIème siècle, de nombreux instruments (jumelles, lunettes astronomiques diverses, télescopes, etc.) ont été développés afin de pouvoir observer les astres dans le ciel terrestre. Ces instruments augmentent la luminosité et forment une image agrandie des objets stellaires permettant ainsi d'observer des astres qui ne sont pas visibles à l'œil nu.

Parmi ces instruments, la lunette afocale est un des plus simples. On se propose de l'étudier.

Le but de cette épreuve est d'étudier l'influence du choix de l'objectif sur le grossissement d'une lunette afocale.

INFORMATIONS MISES À DISPOSITION DU CANDIDAT

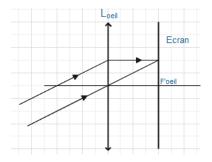
La lunette afocale

La lunette astronomique afocale est composée de deux lentilles convergentes : l'objectif, par lequel la lumière entre dans l'appareil et l'oculaire à travers lequel on observe. Cette lunette est construite de manière à faire coïncider le foyer image F'obj de l'objectif et le foyer objet Focul de l'oculaire.

Le grossissement G de la lunette est défini par la relation : $G = \frac{\alpha'}{\alpha}$

avec: a', l'angle sous lequel l'objet est vu à travers la lunette

α, l'angle sous lequel l'objet est vu à l'œil nu


Lorsque α est inférieur à 0,30 rad ou 17°, on peut considérer que tan $\alpha \sim \alpha$.

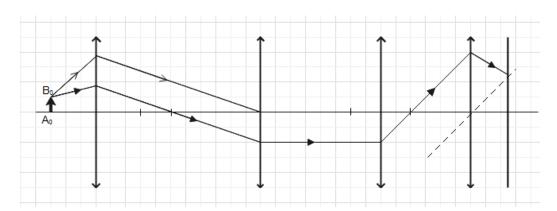
Modélisation d'un objet lointain

Les lunettes astronomiques sont souvent utilisées pour l'observation d'objets très éloignés, comme les étoiles ou les planètes du système solaire. On considérera que les rayons lumineux qui proviennent d'un astre sont parallèles. Pour modéliser un tel objet, il faut donc placer l'objet au foyer objet d'une lentille convergente.

Modélisation d'un œil

Un œil regardant un objet lointain peut être modélisé par une lentille convergente (qui représente entre autres le cristallin) et un écran (qui représente la rétine), placé dans le plan focal image de la lentille.

TRAVAIL À EFFECTUER

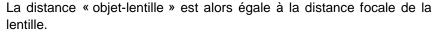

1. Schéma d'une lunette afocale (10 minutes conseillées)

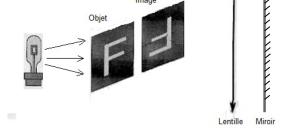
Le schéma ci-dessous représente un montage comportant :

- un dispositif modélisant un objet lointain ;
- un dispositif modélisant une lunette afocale ;
- un dispositif modélisant un œil.

Sur ce schéma:

- Identifier les trois dispositifs cités ci-dessus.
- Placer les foyers objet et image de l'objectif (Fobj et F'obj) et de l'oculaire (Focul et F'ocul).
- Prolonger le trajet du rayon lumineux initié en trait continu
- Construire l'image intermédiaire A₁B₁ de l'objet formée par l'objectif.
- Construire l'image A₂B₂ formée sur la rétine.
- Repérer les angles α et α'.


Quelle distance sépare les lentilles modélisant l'objectif et l'oculaire ?


APPEL n°1 Appeler le professeur pour lui présenter le schéma ou en cas de difficulté

2. Mesures de distances focales par auto-collimation (10 minutes conseillées)

Suivre le protocole ci-dessous afin de vérifier la valeur de la distance focale de la lentille $L_{objectif1}$ et reporter la valeur dans le tableau ci-après.

- Disposer une source lumineuse et un objet AB (la lettre F) à l'extrémité du banc d'optique.
- Placer la lentille étudiée devant l'objet et un miroir plan M juste derrière la lentille.
- Déplacer l'ensemble « lentille-miroir » de façon à observer une image A'B' dans le même plan que l'objet AB et de même taille (voir ci-contre).

- Reproduire la mesure pour la lentille Lobjectif2 et compléter le tableau ci-après.

Lentille	Lobjectif1	L _{objectif2}	L _{objectif3}	L _{objectif4}
Distance focale (en mm)			353	507

APPEL n°2				
W.	Appeler le professeur lors d'une mesure ou en cas de difficulté			

3. Grossissement d'une lunette afocale (20 minutes conseillées)

Mettre en œuvre le dispositif **schématisé au 1.** en utilisant les graduations du banc d'optique et en tenant compte des remarques suivantes :

- l'ensemble « lanterne-objet-lentille L₀ » modélise l'objet situé à l'infini décrit dans les informations mises à disposition « modélisation d'un objet lointain » ;
- la lentille Lobjectif1 modélisant l'objectif de la lunette afocale est placée à environ 400 mm de la lentille Lo;
- l'oculaire de la lunette est modélisé par la lentille Loculaire et placé à une distance adéquate de l'objectif ;
- la lentille Loeil modélisant le cristallin de l'œil est placée à environ 100 mm de l'oculaire;
- placer l'écran modélisant la rétine en respectant les indications des informations mises à disposition « modélisation d'un œil ».

En utilisant le deuxième écran, mesurer précisément la taille de l'image intermédiaire A_1B_1 de l'objet formée par l'objectif.

Puis ôter cet écran et mesurer précisément la taille A_2B_2 de l'image sur l'écran modélisant la rétine de l'œil :

$$A_1B_1 = \dots$$
 et $A_2B_2 = \dots$

APPEL FACULTATIF				
	Appeler le professeur en cas de difficulté			

LUNETTE AFOCALE

Session 2025

On admettra qu'ave	ec le montage utilisé, on tan(peut déterminer le $\alpha = \frac{A_1 B_1}{f'_{objectif}}$		gles $lpha$ et $lpha$ ' à l'aide	e des relations :
	a taille de l'image interm tance focale de cette len	édiaire formée pa	OGII	ille modélisant l'ob	ojectif de la lunette
 A₂B₂ est la modélisant 	taille de l'image formée le cristallin.	sur l'écran repré	sentant la rétine e	et <i>f'_{oeil}</i> la distance f	ocale de la lentille
Déterminer les vale	urs des angles α et α '.				
En déduire la valeu	r du grossissement <i>G</i> de	la lunette ainsi c	onstituée : G =		
		APPEL r	°3		
	Appeler le pro	Appeler le professeur pour lui présenter les résultats ou en cas de difficulté			
	objectif sur le grossiss es du 3. en remplaçant		ŕ	iif2.	
restant le même. Co	ous donne les valeurs o	•	•	•	s, l'oculaire utilisé
Lentille con	Lentille constituant l'objectif		Lobjectif2	Lobjectif3	Lobjectif4
Grossi	Grossissement G			6,9	9,5
Indiquer comment l'	'objectif doit être choisi a	fin d'avoir la lune	tte afocale la plus	performante possi	ible.

Défaire le montage et ranger la paillasse avant de quitter la salle.