Métropole juin 2021 sujet 2

CORRECTION Yohan Atlan © www.vecteurbac.fr

CLASSE : Terminale **EXERCICE B** : au choix du candidat (10 points)

VOIE : ⊠ Générale

ENSEIGNEMENT DE SPÉCIALITÉ: Sciences de l'ingénieur- Partie Sciences physiques

DURÉE DE L'EXERCICE : 30 min **CALCULATRICE AUTORISÉE** : ⊠ Oui « type collège »

EXERCICE B - Autonomie et confort d'une voiture électrique (10 points)

1.

L'énergie utilisée par la voiture pour rouler 242 km sans chauffage est 40 kWh. Avec chauffage, la voiture ne roule que 200 km soit une différence de 42km.

242 km	40 kWh
42km	Echauffage

$$E_{\text{\tiny chauffage}} = \frac{42 \times 40}{242}$$

$$E_{chauffage} = 6.9 \text{ kWh}$$

L'énergie $E_{\mbox{\tiny chauffage}}$ utilisée pour le chauffage lorsque la voiture roule jusqu'à décharge complète de la batterie est égale à 6,9 kWh.

2.

$$\begin{split} E_{_{chauffage}} &= \Delta U = m \times c \times \Delta T \\ m \times c \times \Delta T &= E_{_{chauffage}} \\ \Delta T &= \frac{E_{_{chauffage}}}{m \times c} \end{split}$$

Or
$$\rho = \frac{m}{V}$$

$$m = \rho \times V$$

$$\begin{split} \Delta T &= \frac{E_{\text{chauffage}}}{\rho \times V \times c} \\ \Delta T &= \frac{6.9 \cdot 10^3 \times 3600}{1.3 \times 2.6 \times 1.0 \cdot 10^3} \\ \Delta T &= 7.3 \cdot 10^3 \text{ K} \\ \Delta T &= 7.3 \cdot 10^3 \text{ °C} \end{split}$$

(Remarque : pour passer de la température de Kelvin en degré Celsius on fait -273,15. Cependant la variation de température est la même en Kelvin et en degré Celsius)

Une variation de température de plus de 7000°C est impossible dans une voiture. Les hypothèses sont fausses.

- Les transferts thermiques avec l'extérieur doivent être pris en compte ;
- ightharpoonup l'énergie $E_{\tiny{chauffage}}$ n'est pas entièrement cédée à l'air contenu dans l'habitacle.

3.

Un transfert thermique se fait du corps chaud (air de l'habitacle à 20°C) vers le corps froid (air extérieur à 5°C).

4.

Lorsque l'air est en mouvement, il y a augmentation de la convection. Ainsi les échanges thermiques sont plus importants : Schéma B.

$$\frac{dT_{hab}(t)}{dt} = \frac{1}{\tau} \cdot (T_{ext} - T_{hab}(t))$$

$$\frac{1}{\tau}.\left(T_{\text{ext}}-T_{\text{hab}}(t)\right) = \frac{dT_{\text{hab}}(t)}{dt}$$

$$\frac{1}{\tau} = \frac{dT_{hab}(t)}{dt} \times \frac{1}{\left(T_{ext} - T_{hab}(t)\right)}$$

$$\frac{1}{[\tau]} = \frac{[dT_{hab}(t)]}{[dt]} \times \frac{1}{[T_{ext} - T_{hab}(t)]}$$

$$\frac{1}{[\tau]} = \frac{{}^{\circ}K}{s} \times \frac{1}{{}^{\circ}K}$$

$$\frac{1}{[\tau]} = \frac{1}{s}$$

$$[\tau] = s$$

La dimension de la constante τ est une durée.

6.

$$T_{hab}(t) = A \cdot e^{\frac{-t}{\tau}} + B$$

A l'instant
$$t = \infty$$
 , $T_{hab}(t = \infty) = T_{ext}$

$$T_{hab}(t = \infty) = A \cdot e^{\frac{-\infty}{\tau}} + B$$

$$T_{hab}(t = \infty) = A \times 0 + B$$

$$T_{\text{hab}}(t = \infty) = B$$

$$B = T_{\text{ext}}$$

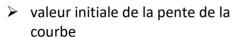
A l'instant t=0 ,
$$T_{hab}(t=0) = T_i$$

$$T_{hab}(t=0) = A \cdot e^{\frac{-0}{\tau}} + B$$

$$T_{\text{hab}}(t=0) = A + B$$

$$A + B = \frac{T_i}{}$$

$$A = T_i - B$$


$$A = T_i - \frac{T_{ext}}{}$$

7.

Commenter l'allure du graphique :

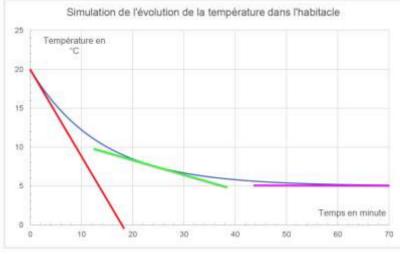
évolution de la pente de la courbe

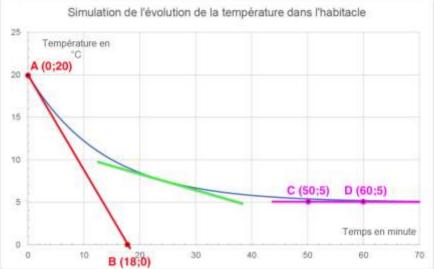
La pente est négative. La valeur absolue de la pente décroit au cours du temps.

$$k = \frac{y_B - y_A}{x_B - x_A}$$

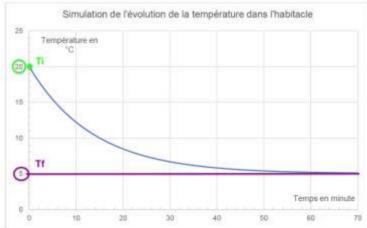
$$k = \frac{0 - 20}{18 - 0}$$

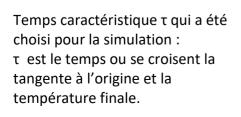
$$k = -1.1 \text{ °C. min}^{-1}$$


valeur asymptotique de la pente de la courbe.

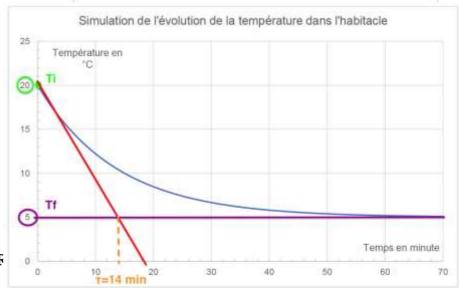

$$k' = \frac{5 - 5}{60 - 50}$$

$$k' = 0 \text{ °C. min}^{-1}$$


 $\label{eq:Valeur} \begin{array}{ll} \blacktriangleright & \mbox{Valeur initiale de la} \\ & \mbox{temp\'erature}: T_i = 20 \mbox{°C} \end{array}$


 $\begin{tabular}{ll} \blacktriangleright & \mbox{Valeur asymptotique de la} \\ & \mbox{temp\'erature}: T_f = 5 \mbox{°C} \\ \end{tabular}$

Les valeurs sont en accord avec les valeurs trouvées à la question 6.



τ=14 min

