EXERCICE 3 (4 points) (mathématiques)

Dans cet exercice, les questions 1, 2, 3 et 4 sont indépendantes les unes des autres.

Question 1

Pour cette question, indiquer la lettre de la réponse exacte.

Aucune justification n'est demandée.

Pour tout nombre réel x > 0, l'expression $3\ln(2x) - \ln(8)$ est égale à :

Α	В	С	D
$\ln\left(\frac{3}{2}x\right)$	$3\ln(x)$	$3 \ln \left(\frac{x}{4}\right)$	$3\ln(2x-8)$

Question 2

Pour cette question, indiquer la lettre de la réponse exacte.

Aucune justification n'est demandée.

Soit la fonction g définie sur **R** par $g(x) = x^2 e^{-2x}$. On admet que g est dérivable sur **R** et on note g' la fonction dérivée de g. Pour tout nombre réel x, on a :

Α		В
	$g'(x) = 2xe^{-2x}(1-x)$	$g'(x) = -4xe^{-2x}$
С		D
	$g'(x) = 2xe^{-2x}(1+x)$	$g'(x) = -2x^2 e^{-2x}$

Question 3

Le plan complexe est rapporté à un repère orthonormé (O ; \vec{u} , \vec{v}). On désigne par i le nombre complexe de module 1 et d'argument $\frac{\pi}{2}$.

Soient les points A et B d'affixes respectives $z_A = 2e^{i\frac{\pi}{3}}$ et $z_B = -\sqrt{3} + i$.

Donner la forme algébrique de z_A ainsi que la forme exponentielle de z_B .

Question 4

En faisant apparaître les étapes de calcul, calculer :

$$\int_0^{\frac{\pi}{2}} \cos(2x) \, \mathrm{d}x.$$

Page : 9/12