ÉVALUATION 2025

CORRECTION Yohan Atlan © www.vecteurbac.fr

CLASSE: Terminale **E3C**: □ E3C1 ⋈ E3C2 □ E3C3

VOIE : □ GénéraleENSEIGNEMENT : Enseignement scientifiqueDURÉE DE L'ÉPREUVE : 1 hCALCULATRICE AUTORISÉE : □ Oui □ Non

L'éolien - un choix raisonné?

Sur 10 points Thème « Le futur des énergies »

Partie A – La production d'énergie électrique française

1.

Le pétrole est une source d'énergie fossile.

2.

La production d'énergie électrique issue de l'éolien représente 9,4% de la production d'énergie totale en France.

$$E_{\text{\'eolien}} = \frac{9,4}{100} \times E_{\text{totale}}$$

$$E_{\text{\'eolien}} = \frac{9,4}{100} \times 272\ 000$$

$$E_{\text{\'eolien}} = 25\ 568\ \text{GWh}$$

		Nucléaire	Hydraulique	Éolien	Solaire	Bioénergie	Sources d'énergie fossile
	Part en %	65	15	9,4	4,2	2,2	4,2

3.

D'après le sujet : 1 800 GWh ont été produits par des éoliennes en mer.

$$\begin{aligned} P_{\text{\'eolien mer}} &= \frac{E_{\text{\'eolien mer}}}{E_{\text{\'eolien mer}}} \\ P_{\text{\'eolien mer}} &= \frac{1\,800}{25\,568} \\ P_{\text{\'eolien mer}} &= 0.07 \\ P_{\text{\'eolien mer}} &= 7\,\% \end{aligned}$$

La part de l'éolien en mer dans la production totale d'énergie électrique issu de l'éolien représente 7%.

Partie B – Comparaison des énergies éolienne et nucléaire

4.

Calculons l'énergie électrique fournie pendant un an une éolienne de la région Nouvelle-Aquitaine. On sait que ces éoliennes fonctionnent en pleine charge 2000 h par an et que la Puissance électrique délivrée (MW) est comprise entre 2 et 3 (on prendra une moyenne de 2,5) :

 $E_{\text{une \'eolienne}} = P \times \Delta t$

 $E_{\text{une \'eolienne}} = 2.5 \times 10^6 \times 2000$

 $E_{\text{une \'eolienne}} = 5.0 \times 10^9 \text{ Wh}$

 $E_{\text{une \'eolienne}} = 5.0 \text{ GWh}$

Calculons l'énergie électrique fournie pendant un an par les 702 éoliennes de la région Nouvelle-Aquitaine :

 $E_{\text{toutes \'eoliennes}} = 702 \times E_{\text{une \'eolienne}}$

 $E_{\text{toutes \'eoliennes}} = 702 \times 5.0$

 $E_{\text{toutes \'eoliennes}} = 3510 \text{ GWh}$

La centrale nucléaire de Civaux produit en moyenne 25 mille GWh d'électricité en un an.

Comparons l'énergie électrique fournie pendant un an par les 702 éoliennes de la région Nouvelle-Aquitaine et celle fournie par la centrale nucléaire de Civaux :

$$\frac{E_{centrale\ nucl\acute{e}aire}}{E_{toutes\ \acute{e}oliennes}} = \frac{25\ 000}{3\ 510} = 7$$

Ainsi, la centrale nucléaire de Civaux produit 7 fois plus d'énergie que les 702 éoliennes de la région Nouvelle-Aquitaine.

5.

L'éolien en mer présente plusieurs avantages :

- Il permet une production d'électricité plus importante que l'éolien terrestre, grâce à des vents plus puissants et réguliers.
- La puissance produite par les éoliennes en mer varie entre 6 et 12 MW, contre 2 à 3 MW pour les terrestres.
- Leur bilan carbone reste faible, entre 15 et 25 g de CO₂ par kWh, ce qui en fait une énergie peu polluante. Leur implantation libère de l'espace terrestre pour d'autres usages agricoles ou urbains.

Cependant, il existe aussi des inconvénients :

- Le coût de production est élevé, entre 3 et 5 millions d'euros par MW, bien supérieur à celui des éoliennes terrestres.
- Les installations en mer peuvent perturber la biodiversité marine : les vibrations et les modifications de l'environnement peuvent nuire aux espèces marines.

6.

L'énergie éolienne utilise la force du vent pour produire de l'électricité. C'est une source renouvelable, disponible en grande quantité et au bilan carbone faible : entre 10 et 15 g de CO₂/kWh pour l'éolien terrestre, et entre 15 et 25 g de CO₂/kWh pour l'éolien en mer. En Nouvelle-Aquitaine, les 702 éoliennes terrestres produisent 5 GWh par an. L'éolien en mer permet une puissance encore plus élevée, entre 6 et 12 MW par éolienne, mais avec un coût plus important, compris entre 3 et 5 millions d'euros par MW installé.

L'énergie nucléaire repose sur la fission d'atomes comme l'uranium. Elle produit une quantité bien plus importante d'électricité : la centrale de Civaux produit à elle seule 25 000 GWh par an, soit 5 fois plus que toutes les éoliennes de Nouvelle-Aquitaine. Son bilan carbone est aussi très faible, entre 5 et 15 g de CO₂/kWh. De plus, le nucléaire offre une production continue et stable, indépendante des conditions climatiques. Cependant, son coût d'investissement est très élevé : la construction d'un réacteur EPR peut atteindre six dizaines de milliards d'euros. Il existe aussi des risques liés aux déchets radioactifs et aux accidents nucléaires.

L'éolien a un impact limité en termes de gaz à effet de serre, mais il peut perturber la faune terrestre ou marine, notamment en mer, où les vibrations nuisent à certaines espèces.

Le nucléaire, quant à lui, produit peu de CO₂ mais pose la question du stockage à long terme des déchets radioactifs.

En conclusion, l'éolien et le nucléaire sont deux sources à faible émission de carbone, mais aux caractéristiques bien différentes : l'éolien est plus respectueux des ressources, mais moins puissant et intermittent ; le nucléaire est très productif et stable, mais coûteux et à risques.