Diplôme national du brevet Métropole septembre 2025

CORRECTION Yohan Atlan © www.vecteurbac.fr

CLASSE: 3^{ème} **SERIE**: ⊠ Générale

DURÉE DE L'EXERCICE : 30 min **CALCULATRICE AUTORISÉE** : ☑ Oui « type collège »

L'hydrogène aurait-il une couleur ? (25 points)

Question 1

La production de dihydrogène « noir » ou « gris » :

- utilise des sources d'énergie non renouvelables (charbon, gaz naturel) et contribue donc épuisement des ressources.
- émet des gaz à effet de serre (CO₂) et contribue donc au réchauffement climatique.

Question 2

2-a-

La forme d'énergie stockée dans la pile à combustible est l'énergie chimique.

2-b-

- (1) correspond au transfert électrique (courant fourni par la pile à combustible vers le moteur électrique).
- (2) correspond au transfert mécanique (force transmise du moteur vers la transmission et les roues).

Question 3

3-a-

Production de dihydrogène qualifié de « gris » :

$$CH_4 + 2H_2O \rightarrow 4H_2 + CO_2$$

Les produits formés sont le dihydrogène (H₂) et le dioxyde de carbone (CO₂).

3-b-

Dans les équations de production « noir » et « gris », on observe la formation de CO₂, un gaz à effet de serre :

$$C + 2H_2O \rightarrow 2H_2 + CO_2$$

 $CH_4 + 2H_2O \rightarrow 4H_2 + CO_2$

Alors que pour la production « verte » : $2H_2O \rightarrow 2H_2 + O_2$

Aucun dioxyde de carbone n'est émis, seulement du dioxygène.

L'avantage environnemental de la production de dihydrogène qualifié de « vert » par rapport à la production de dihydrogène qualifié de « noir » ou de « gris » est la non production de dioxyde de carbone (CO₂).

3-c-

Comparons les équations :

- Production « noir » : $2C + 4H_2O \rightarrow 4H_2 + 2CO_2$
- Pour 4 H₂ produits, il y a 2 molécules de CO₂ émis.
 - Production « gris »: $CH_4 + 2H_2O \rightarrow 4H_2 + CO_2$

Pour 4 H₂ produits, il y a 1 molécule CO₂ émis.

Ainsi, la production d'une même quantité de dihydrogène émet deux fois plus de dioxyde de carbone pour du dihydrogène qualifié de « noir » que pour du dihydrogène qualifié de « gris ».

Question 4

4-a-

$$\rho = \frac{\mathrm{m}}{V}$$

$$\frac{m}{V} = \rho$$

$$m = \rho \times V$$

$$m = 42 \times 0.15$$

$$m = 6.3 \text{ kg}$$

Ainsi, la valeur de la masse de dihydrogène gazeux stockée est égale à 6,3 kg

4-b-

Masse de H₂ (kg)	Volume (m³) à 1 bar
1	11
6,3	V

$$V = \frac{6.3 \times 11}{1}$$

$$V = 69.3 \, m^3$$

Le volume qu'occuperait cette masse de dihydrogène gazeux stocké sous une pression atmosphérique d'un bar est de 69,3 m³.

4-c-

Sans compression, 6,3 kg de H₂ occuperaient 69,3 m³, un volume énorme impossible à stocker dans une voiture avec un volume disponible du coffre de 0,32 m³.

En le comprimant à 700 bar, ce même dihydrogène tient dans un réservoir de seulement 0,15 m³, ce qui est bien inférieur au volume disponible du coffre (0,32 m³).

Ainsi, la compression permet de stocker une grande quantité d'énergie dans un espace réduit et adapté au véhicule.