Amérique du Sud 2025 Sujet 2

CORRECTION Yohan Atlan © https://www.vecteurbac.fr/

CLASSE: Terminale **EXERCICE 2**: 5 points

VOIE : ☑ GénéraleENSEIGNEMENT DE SPÉCIALITÉ : PHYSIQUE-CHIMIEDURÉE DE L'EXERCICE : 0h53CALCULATRICE AUTORISÉE : ☑Oui « type collège »

EXERCICE 2: Chauffe-eau thermodynamique d'un chalet

Partie 1. Étude de la production d'eau chaude.

Q1.

$$\begin{split} \Delta U &= m_{eau} \times c_{eau} \times (\theta_f - \theta_i) \\ \Delta U &= m_{eau} \times c_{eau} \times (\theta_2 - \theta_1) \\ \text{Or} \\ \rho_{eau} &= \frac{m_{eau}}{V} \\ \frac{m_{eau}}{V} &= \rho_{eau} \\ \frac{m_{eau}}{V} &= \rho_{eau} \times V \\ \text{D'où} \\ \Delta U &= \rho_{eau} \times V \times c_{eau} \times (\theta_2 - \theta_1) \\ \Delta U &= 1.0 \times 200 \times 4.18 \times 10^3 \times (55 - 15) \\ \Delta U &= 3.3 \times 10^7 \text{ J} \end{split}$$

Q2.

Le principal mode de transfert thermique à l'origine du flux thermique à travers de la paroi du ballon est la conduction.

Le transfert thermique se fait du corps chaud vers le corps froid.

L'eau chaude a une température θ_2 = 55 °C

L'air du garage a une température θ_{air} = 18 °C

Ainsi, le transfert thermique se fait de l'eau chaude vers l'air du garage.

$$\phi = \frac{\theta_A - \theta_B}{R_{th}}$$

$$\phi = \frac{\theta_2 - \theta_{air}}{R_{th}}$$

$$\phi = \frac{55 - 18}{0.47}$$

$$\phi = 79 \text{ W}$$

$$\begin{split} \Phi &= \frac{Q}{\Delta t} \\ \frac{Q}{\Delta t} &= \Phi \\ Q &= \Phi \times \Delta t \\ Q_1 &= 79 \times 24 \times 60 \times 60 \\ Q_1 &= 6.8 \times 10^6 \text{ J} \\ Q_1 &= 6.8 \times 10^3 \text{ k J} \end{split}$$

La valeur de la quantité d'énergie thermique Q_1 échangée entre l'eau liquide contenue dans le ballon et l'air du garage en une journée est égale à 6.8×10^3 kJ.

$$\Delta U = Q + W$$
Or $W = 0$

Donc
$$\Delta U = Q$$

Or $Q = Q_1 + Q_2$

Donc

$$\Delta U = Q_1 + Q_2$$

$$Q_1 + Q_2 = \Delta U$$

$$Q_2 = \Delta U - Q_1$$

Q6.

$$Q_2 = \Delta U - Q_1$$

Remarque: l'énergie Q1 échangée entre l'eau liquide contenue dans le ballon et l'air du garage est perdue par l'eau, elle est donc comptée négativement.

$$Q_2 = 3.3 \times 10^7 - (-6.8 \times 10^6)$$

$$Q_2 = 4.0 \times 10^7 J$$

Or 1 W·h=3 600 J.

$$Q_{2} = \frac{4,0 \times 10^{7}}{3600}$$

$$Q_{2} = 1,1 \times 10^{4} W \cdot h$$

$$Q_{2} = 11 \text{ kW} \cdot h$$

Ainsi, la valeur de l'énergie thermique Q_2 est de 11 kW·h.

Q7.

Une PAC est caractérisée par son coefficient de performance, ou COP, qui est défini comme le quotient entre la valeur absolue de l'énergie utile, c'est-à-dire la valeur du transfert thermique cédé à la source à chauffer, et l'énergie électrique consommée nécessaire à son fonctionnement.

$$COP = \frac{Q_{utile}}{E_{PAC}}$$

$$COP = \frac{Q_2}{E_{PAC}}$$

$$COP \times E_{PAC} = Q_2$$

$$E_{PAC} = \frac{Q_2}{COP}$$

$$E_{PAC} = \frac{11}{3,2}$$

$$E_{PAC} = \frac{11}{3.2}$$

$$E_{PAC} = 3.4 \text{ kW} \cdot \text{h}$$

Calculons l'énergie produite par les panneaux photovoltaïques.

$$E_{\rm PV} = P \times \Delta t$$

Or

$$P = N \times P_{\text{elec}}$$

$$E_{\rm PV} = N \times P_{\rm elec} \times \Delta t$$

$$E_{\rm PV} = 10 \times 300 \times 5$$

$$E_{\rm PV} = 1.5 \times 10^4 \ W \cdot h$$

$$E_{\rm PV} = 15 \text{ kW} \cdot h$$

D'après l'énoncé : « La consommation électrique quotidienne du chalet est estimée à 8 kW·h en plus de l'énergie électrique consommée quotidiennement par la PAC. »

Calculons l'énergie totale nécessaire

$$\begin{aligned} E_{\text{nec}} &= E_{\text{chalet}} + E_{\text{PAC}} \\ E_{\text{nec}} &= 8 + 3.4 \\ E_{\text{nec}} &= 11.4 \text{ kW} \cdot h \end{aligned}$$

 $E_{PV} > E_{nec}$: en supposant que cette consommation a lieu pendant la durée d'ensoleillement, l'installation est suffisante pour couvrir la consommation électrique quotidienne totale du chalet.

Partie 2. Étude sonore du chauffe-eau thermodynamique O9.

L'atténuation sonore mis en œuvre par l'isolation phonique du garage est une atténuation par absorption.

Q10.

Exprimons la puissance sonore P:

$$I = \frac{P}{4 \times \pi \times d^2}$$

$$I_1 = \frac{P}{4 \times \pi \times d^2}$$

$$\frac{P}{4 \times \pi \times d_1^2} = I_1$$

$$P = 4 \times \pi \times d_1^2 \times I_1$$

$$P=4\times\pi\times d_1^2\times \underline{I_0}\times \underline{10^{\frac{L_1}{10}}}$$

Exprimons l'intensité sonore l₂ au niveau des vacanciers :

$$I = \frac{P}{4 \times \pi \times d^2}$$

$$I_2 = \frac{P}{4 \times \pi \times d_2^2}$$
Or

$$P = 4 \times \pi \times d_1^2 \times I_0 \times 10^{\frac{L_1}{10}}$$

Ainsi,

$$\begin{split} I_2 &= \frac{4 \times \pi \times d_1^2 \times I_0 \times 10^{\frac{L_1}{10}}}{4 \times \pi \times d_2^2} \\ I_2 &= \frac{d_1^2 \times I_0 \times 10^{\frac{L_1}{10}}}{d_2^2} \end{split}$$

Calculons le niveau d'intensité sonore au niveau des vacanciers :

$$L = 10 \log \left(\frac{I}{I_0}\right)$$

$$L_2 = 10 \log \left(\frac{I_2}{I_0}\right)$$

$$L_{2} = 10 \log \left(\frac{\frac{d_{1}^{2} \times I_{0} \times 10^{\frac{L_{1}}{10}}}{d_{2}^{2}}}{I_{0}} \right)$$

$$L_{2} = 10 \log \left(\frac{d_{1}^{2} \times I_{0} \times 10^{\frac{L_{1}}{10}}}{I_{0} \times d_{2}^{2}} \right)$$

$$L_{2} = 10 \log \left(\frac{d_{1}^{2} \times 10^{\frac{L_{1}}{10}}}{d_{2}^{2}} \right)$$

$$L_{2} = 10 \log \left(\frac{0.1^{2} \times 10^{\frac{70}{10}}}{5.0^{2}} \right)$$

$$L_{2} = 36 \text{ dB}$$

Or le propriétaire réalise l'isolation phonique de son garage apportant une atténuation de 25 dB.

$$L'_2 = L_2 - A$$
 $L'_2 = 36 - 25$
 $L'_2 = 11 dB$

D'après l'énoncé : « on considère que dans une chambre à coucher le niveau d'intensité sonore conseillé ne doit pas dépasser 30 dB. »

 $\rm L'_2 < 30~dB$: les vacanciers situés à la distance d_2 = 5,00 m du chauffe-eau ne seront pas gênés par son fonctionnement.